# HIGH-RESOLUTION X-RAY SPECTROSCOPY OF THE POST-T TAURI STAR PZ TELESCOPII

C. ARGIROFFI,<sup>1</sup> J. J. DRAKE,<sup>2</sup> A. MAGGIO,<sup>3</sup> G. PERES,<sup>1</sup> S. SCIORTINO,<sup>3</sup> AND F. R. HARNDEN<sup>2</sup> Received 2004 January 9; accepted 2004 February 26

#### ABSTRACT

We present an analysis of the *Chandra* High Energy Transmission Grating Spectrometer observation of the rapidly rotating ( $P_{rot} = 0.94$  days) post–T Tauri (~20 Myr old) star PZ Telescopii, in the Tucana association. Using two different methods, we have derived the coronal emission measure distribution EM(*T*) and chemical abundances. The EM(*T*) peaks at log *T* = 6.9 and exhibits a significant emission measure at temperatures log *T* > 7. The coronal abundances are generally ~0.5 times the solar photospheric values, which are presumed fairly representative of the composition of the underlying star. A minimum in abundance is seen at a first ionization potential (FIP) of 7–8 eV, with evidence for higher abundances at both lower and higher FIP, similar to patterns seen in other active stars. From an analysis of the He-like triplet of Mg x1, we have estimated electron densities of ~10<sup>12</sup>–10<sup>13</sup> cm<sup>-3</sup>. All the coronal properties found for PZ Tel are much more similar to those of AB Dor, which is slightly older than PZ Tel, than to those of the younger T Tauri star TW Hya. These results support earlier conclusions that the soft X-ray emission of TW Hya is likely dominated by accretion activity rather than by a magnetically heated corona. Our results also suggest that the coronae of pre–main-sequence stars rapidly become similar to those of older active main-sequence stars soon after the accretion stage has ended.

Subject headings: stars: abundances — stars: coronae — stars: individual (PZ Telescopii) – stars: pre-main-sequence — techniques: spectroscopic — X-rays: stars

## 1. INTRODUCTION

One of the primary characteristics of low-mass pre-mainsequence (PMS) stars is their intense X-ray activity. This X-ray emission therefore represents an important means for investigating the properties and evolution of young stellar objects. X-ray activity is present during the evolution of PMS stars both in the initial evolutionary stages of a classic T Tauri star (CTTS, Class I and II sources), during which the star has an accretion disk that surrounds it, and in the subsequent weak-line T Tauri star (WTTS, Class III sources) phase, in which the star has no accreting material and is approaching the zero-age main sequence (ZAMS; Feigelson & Montmerle 1999). How the presence of accreting material influences the X-ray emission of PMS stars, and for how long, remain questions of debate.

The high-resolution X-ray spectra now available with the *Chandra* and *XMM-Newton* satellites offer the possibility of performing detailed studies of stellar coronae because the diagnostics of key emission lines can now be resolved. These diagnostics can be used to derive the elemental abundances, temperature, and density structure of the emitting plasmas.

It is worth noting that very few young stars in star-forming regions or associations are sufficiently X-ray bright to allow high-resolution X-ray spectroscopy with current instrumentation. In particular, among the CTTSs TW Hya is the best-studied case to date because it is the nearest ( $\sim$ 56 pc) known CTTS. TW Hya shows spectral characteristics very different from those of young but otherwise *normal* active stars (Kastner et al. 2002; Stelzer & Schmitt 2004): very low

<sup>3</sup> INAF - Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, 90134 Palermo, Italy; maggio@astropa.unipa.it, sciorti@astropa.unipa.it.

plasma temperature (log  $T \sim 6.5$ ), high density (log  $N_e \sim 13$ ), and very low Fe abundance ( $A_{\rm Fe}/A_{\rm Fe_{\odot}} \sim 0.2$ ). Kastner et al. (2002) and Stelzer & Schmitt (2004) attributed these characteristics to an accretion shock rather than coronal activity. Without the benefit of high-resolution spectra of similar stars for comparison, however, the nature of the peculiarity of TW Hya remains uncertain.

The situation with slightly more evolved stars is more clear. Studies of AB Dor, a young active star that has nearly arrived at the ZAMS and that has been observed in the past with several space-borne X-ray observatories, have shown that it is characterized by a hot corona  $(T \sim 10^7 \text{ K})$ , with plasma densities ranging from  $6 \times 10^{10} \text{ cm}^{-3}$  at  $2 \times 10^6 \text{ K}$  to  $3 \times 10^{12} \text{ cm}^{-3}$  at  $10^7 \text{ K}$ , and a moderately low Fe abundance  $(A_{\text{Fe}}/A_{\text{Fe}_{\odot}} \sim 0.25$ ; Mewe et al. 1996; Güdel et al. 2001; Sanz-Forcada et al. 2003b; P. Testa 2004, in preparation; D. García-Alvarez 2004, in preparation). In many respects, AB Dor can be considered the prototype of very active single stars.

High-resolution X-ray spectroscopy of other PMS stars with ages between a few  $10^6$  yr, typical of CTTSs such as TW Hya, and  $10^8$  yr, the ZAMS of solar-type stars such as AB Dor, is crucial for understanding how the characteristics of stellar X-ray activity change during these early evolutionary phases.

In this work, we present a *Chandra* High Energy Transmission Grating Spectrometer (HETGS) observation of PZ Telescopii (HD 174429, HIP 92680). Classified as a K0 V star by Houk (1978), PZ Tel was determined by Zuckerman & Webb (2000) to be a member of the Tucana association, a nearby star-forming region ~45 pc away. From observations with the *ROSAT* PSPC, Stelzer & Neuhäuser (2000) deduced a PZ Tel X-ray luminosity of  $L_X \sim (2.88 \pm 0.08) \times 10^{30}$  ergs s<sup>-1</sup>. At a *Hipparcos* parallax distance of 49.7 ± 2.9 pc (Perryman et al. 1997), PZ Tel is a single star with a rotational period of 0.94 days (Coates et al. 1980; Innis et al. 1984, 1986). Favata et al. (1998) have estimated a mass of 1.1  $M_{\odot}$  for PZ Tel and an age of approximately 20 Myr. Its youth is also confirmed by prominent H $\alpha$  emission and a relatively

<sup>&</sup>lt;sup>1</sup> Dipartimento di Scienze Fisiche ed Astronomiche, Sezione di Astronomia, Università di Palermo, Piazza del Parlamento 1, 90134 Palermo, Italy; argi@ astropa.unipa.it, peres@astropa.unipa.it.

<sup>&</sup>lt;sup>2</sup> Smithsonian Astrophysics Observatory, 60 Garden Street, Cambridge, MA 02138; jdrake@cfa.harvard.edu, frh@cfa.harvard.edu.

Vol. 609

undepleted Li abundance (Soderblom et al. 1998). Further evidence of its PMS status has been pointed out by Barnes et al. (2000), who deduced from  $v \sin i$  and  $P_{rot}$  that the minimum radius of PZ Tel is  $R \sin i \sim 1.27 R_{\odot}$ : this value is larger than the radius of a main-sequence star with the same mass as PZ Tel.

The analysis of Chandra HETGS high-resolution spectra of PZ Tel offers us the opportunity to study the coronal properties of a single star that has dissipated its accretion disk and is approaching the ZAMS. This study also allows us to compare the coronal properties of PZ Tel with those of both younger and older stars, providing a glimpse of the evolution of stellar coronae through the PMS phase. In particular, the CTTSs have disks from which active accretion is still taking place. These stars could have quite different magnetospheric geometries, possibly involving magnetic connections between star and disk (e.g., Montmerle 2002). In the case of coeval and older stars, it appears that the coronal activity of PMS stars without an accreting disk can be explained on the same basis as that of main-sequence stars (Flaccomio et al. 2003): stellar rotation and convection. In this domain, PZ Tel provides a new window on phenomena such as the chemical fractionation of elements that is seen to occur in coronae over a wide range of activity level. In the solar case, elements with low first ionization potential (FIP) such as Mg, Fe, and Si are seen to be enhanced relative to elements with high FIP such as O, Ne, and Ar (e.g., Feldman 1992). In more active stars the situation appears somewhat reversed, with elements such as Ne appearing enhanced relative to those with lower FIP (e.g., Drake 2002 and references therein). The case of the active but very young post-T Tauri stars remains unexplored at high spectral resolution.

In  $\S$  2 and 3, we describe the *Chandra* observation and the techniques used in its analysis. In  $\S$  4, we present the resulting coronal temperature structure and abundances. These are discussed in  $\S$  5, in which we also present a comparison of the coronal properties of PZ Tel with those of AB Dor and TW Hya.

#### 2. OBSERVATION

PZ Tel was observed with the Chandra HETGS on 2003 June 7 for 73.9 ks. The HETGS provides both high-energy grating (HEG) and medium-energy grating (MEG) spectra. The spectral ranges available with these instruments are 1-18 (HEG) and 1–25 Å (MEG), with spectral resolutions  $\Delta \lambda$  of 0.01 and 0.02 Å, respectively. We have used CIAO version 3.0 to extract the positive and negative first-order spectra for each grating and to compute the effective area of the HETG + ACIS-S combinations. In this latter step, we have also taken into account the attenuation resulting from the buildup of a contamination layer on the ACIS-S filter (e.g., Plucinsky et al. 2003) using version 1 of the CIAO effective area contamination correction.<sup>4</sup> In Figure 1, we show the light curve of photon arrival times of the HEG and MEG spectra, excluding zeroth-order events that are subject to significant pileup. Figure 1 shows the X-ray flux to be characterized by variability on timescales of a few to tens of ks, with two flarelike events occurring at ~20 and 55 ks after the start of the observation.

In Figure 2, we illustrate the first-order MEG spectrum; labels identify the strongest emission lines. The X-ray luminos-



Fig. 1.—Light curve of PZ Tel obtained from the HEG and MEG spectra (excluding zeroth-order events) with bin size of 1000 s.

ity obtained from the first-order dispersed events in the interval 6–20 Å is  $L_X = 2.2 \times 10^{30}$  ergs s<sup>-1</sup>, from which we derive log  $(L_X/L_{bol}) = -3.2$ , having adopted  $L_{bol} = 3.6 \times 10^{33}$  ergs s<sup>-1</sup> (obtained from the  $m_V$  and B-V Hipparcos data and the bolometric correction of Flower 1996).

#### 3. ANALYSIS

The MEG first-order spectrum has more than  $1.6 \times 10^4$  total counts and contains lines with good signal-to-noise ratios (S/Ns). The HEG spectrum consists of  $5.5 \times 10^3$  counts, with few lines having sufficient counts to provide useful fluxes. We have therefore based our analysis on the MEG spectrum only. The MEG background is extremely low and contains an average of only 0.02 counts per ACIS pixel and was therefore ignored.

The spectral analysis of PZ Tel has been performed using the PINTofALE version 1.5 software package (Kashyap & Drake 2000). We have adopted the CHIANTI version 4 emission-line database (Young et al. 2003) and the Mazzotta et al. (1998) ionization equilibrium.

Spectral line fluxes were obtained by fitting the counts histograms with a modified Lorentzian profile of the type

$$I(\lambda) = I_{\max} \left[ 1 + \left( \frac{\lambda - \lambda_0}{\Delta \lambda} \right)^2 \right]^{-\beta}$$

with  $\beta = 2.4$ , plus a piecewise constant continuum level. For the continuum placement, we have adopted the following procedure. As a first step we have guessed an emission measure distribution EM(T) and set of abundances in order to predict a continuum level for measuring line fluxes. From these line fluxes, we evaluated the EM(T) and abundances for PZ Tel and updated the predicted continuum level. Considering this new predicted continuum, we have once again measured the line fluxes. We performed several iterations of the above procedure until convergence, i.e., until the continuum used for the line fitting agrees with the continuum predicted on the basis of the reconstructed EM(T) and computed abundances.

In Table 1, we report the strongest lines identified in the PZ Tel spectrum together with their measured MEG count rates. As stated in  $\S$  2, significant variability of the X-ray emission occurred during the observation, but the MEG S/N did not allow us to perform time-resolved spectral analysis of the data. On the other hand, the integrated PZ Tel spectrum provides a good representation of the average state of an active corona where a low-level flarelike activity is present at all times.

<sup>&</sup>lt;sup>4</sup> The CIAO ver. 3.0 Web site on correcting ACIS contamination is at http://cxc.harvard.edu/ciao/threads/aciscontam.



FIG. 2.—PZ Tel MEG smoothed spectrum (summed positive and negative orders) with bin size of 0.005 Å.

The hydrogen column density toward PZ Tel is not known, and there is insufficient information in the HETG spectrum to estimate it. For all the following analyses we have therefore assumed a hydrogen column density of  $10^{19}$  cm<sup>-2</sup>, appropriate for the distance of PZ Tel (49.7 pc) and an average interstellar medium density of 0.1 cm<sup>-3</sup>. We have estimated that if the hydrogen column density is as high as  $10^{20}$  cm<sup>-2</sup>, the effect would be marginally observable only for the O and N lines at  $\lambda > 18$  Å, with an absorption of ~5%–10%.

# 3.1. Emission Measure Distribution and Abundance Reconstruction

We have derived the emission measure distribution from individual line fluxes: one of the main advantages of this procedure in comparison with a global fitting approach is that we can use only the spectral information that we consider most reliable. This choice involves the question of which lines to include in the EM(T) reconstruction and which to exclude. In principle, one would expect that lines that form over the same temperature range should give consistent emission measure values and therefore different line selections should not provide significant differences in the final EM(T). However, in some cases the above assumption will not be correct because of uncertainties in the atomic data, hidden line blending, and other line-measurement difficulties.

We have explored two different choices of spectral lines, which we describe below. For both of these selections, we derived the emission measure distribution using the method

TABLE 1MEG Spectrum of PZ Tel

| Label      | $\lambda_{ m obs}{}^{ m a}$ (Å) | $\lambda_{\text{pred}}^{a}$<br>(Å) | Ion                | Transition (upper $\rightarrow$ lower)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\log T_{\max}^{b}$ (K) | (Count Rates $\pm \sigma$ ) <sup>c</sup><br>(counts ks <sup>-1</sup> ) | Effective Area <sup>d</sup><br>(cm <sup>2</sup> ) | $\mathrm{EM}(T)^{\mathrm{e}}$ |
|------------|---------------------------------|------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------|---------------------------------------------------|-------------------------------|
| 1a         | 4.73                            | 4.73                               | S xvi              | $2p \ ^2P_{3/2} \rightarrow 1s \ ^2S_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.40                    | $0.30\pm0.13$                                                          | 37.5                                              | 1, 2                          |
| 1b         |                                 | 4.73                               | S xvi              | $2p \ ^2P_{1/2} \rightarrow 1s \ ^2S_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.40                    |                                                                        |                                                   |                               |
| 2          | 5.04                            | 5.04                               | S xv               | $1s \ 2p \ ^1P_1 \rightarrow 1s^2 \ ^1S_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.20                    | $0.25\pm0.12$                                                          | 35.2                                              | 1, 2                          |
| 3a         | 6.18                            | 6.18                               | Si xiv             | $2p \ ^2P_{3/2} \to 1s \ ^2S_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.20                    | $1.56\pm0.22$                                                          | 99.7                                              | 1, 2                          |
| 3b         |                                 | 6.19                               | Si xiv             | $2p \ ^2P_{1/2} \rightarrow 1s \ ^2S_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.20                    |                                                                        |                                                   |                               |
| 4          | 6.65                            | 6.65                               | Si xiii            | $\frac{1s}{2p} \frac{2p}{P_1} \rightarrow \frac{1s}{s} \frac{1s}{S_0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.00                    | $1.20 \pm 0.22$                                                        | 117.4                                             | 1, 2                          |
| 5a         | 6.68                            | 6.69                               | S1 XIII            | $\frac{1s}{2p} \stackrel{2}{\rightarrow} \frac{1s^{2}}{s} \stackrel{1}{s} \stackrel{2}{\rightarrow} \frac{1s}{s} \stackrel{2}{\rightarrow} \frac{1s}{s}$ | 6.95                    | $0.31 \pm 0.17$                                                        | 118.1                                             |                               |
| 50         | <br>6 74                        | 6.69                               | S1 XIII<br>Si XIII | $\frac{1s}{2p} \stackrel{2p}{} P_1 \rightarrow \frac{1s}{2} \stackrel{2}{} S_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.95<br>7.00            | $1.14 \pm 0.22$                                                        |                                                   |                               |
| 0<br>70    | 0.74                            | 0.74                               | SI XIII<br>Ma yu   | $\frac{18}{28} \frac{28}{51} \rightarrow \frac{18}{15} \frac{28}{50}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.00                    | $1.14 \pm 0.22$<br>0.69 ± 0.19                                         | 131.4                                             |                               |
| 7a<br>7b   | 7.10                            | 7.11                               | Mg XII             | $\frac{5p}{3n} \frac{r_{3/2}}{2} \rightarrow \frac{1s}{3n} \frac{S_{1/2}}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.00                    | $0.09 \pm 0.19$                                                        | 145.5                                             |                               |
| 8a         | 7.18                            | 7.17                               | Fe xxiv            | $5p^{-1} \frac{1}{1/2} \xrightarrow{1} 13^{-5} \frac{5}{1/2}$<br>$1s^{2} 5p^{-2} P_{2/2} \xrightarrow{1} 1s^{2} 2s^{-2} S_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.30                    | $0.21 \pm 0.17$                                                        | 134.3                                             | 1 2                           |
| 8h         | 7.10                            | 7.17                               |                    | $2n^2 P_{2/2} \rightarrow 1s^2 S_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.10                    | 0.21 ± 0.17                                                            | 15 1.5                                            | 1, 2                          |
| 8c         |                                 | 7.18                               | Al XIII            | $2p^{-2}P_{1/2} \rightarrow 1s^{-2}S_{1/2}$<br>$2p^{-2}P_{1/2} \rightarrow 1s^{-2}S_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.10                    |                                                                        |                                                   |                               |
| 9          | 7.76                            | 7.76                               | Al XII             | $1s 2p {}^{1/2}P_{1} \rightarrow 1s^{2} {}^{1/2}S_{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.90                    | $0.44\pm0.18$                                                          | 132.9                                             | 1, 2                          |
| 10         | 7.85                            | 7.85                               | Mg xi              | $1s \ 3p^{-1}P_1 \to 1s^{2-1}S_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.80                    | $0.23\pm0.17$                                                          | 133.8                                             |                               |
| 11a        | 7.98                            | 7.98                               | Fe xxiv            | $1s^2 4p {}^2P_{3/2} \rightarrow 1s^2 2s {}^2S_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.30                    | $0.44\pm0.18$                                                          | 131.4                                             | 1                             |
| 11b        |                                 | 7.99                               | Fe xxiv            | $1s^2 4p {}^2P_{1/2} \rightarrow 1s^2 2s {}^2S_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.30                    |                                                                        |                                                   |                               |
| 12a        | 8.31                            | 8.30                               | Fe xxIII           | $2s \ 4p \ ^1P_1 \rightarrow 2s^2 \ ^1S_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.20                    | $0.93\pm0.21$                                                          | 134.1                                             |                               |
| 12b        |                                 | 8.32                               | Fe xxiv            | $1s^2 \ 4d \ ^2D_{5/2} \rightarrow 1s^2 \ 2p \ ^2P_{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.30                    | •••                                                                    |                                                   |                               |
| 13a        | 8.42                            | 8.42                               | Mg xii             | $2p \ ^2P_{3/2} \rightarrow 1s \ ^2S_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.00                    | $3.01\pm0.29$                                                          | 136.7                                             | 1, 2                          |
| 13b        |                                 | 8.42                               | Mg xii             | $2p \ ^2P_{1/2} \rightarrow 1s \ ^2S_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.00                    |                                                                        |                                                   |                               |
| 14         | 8.82                            | 8.81                               | Fe xxiii           | $2s \ 4d^{-1}D_2 \rightarrow 2s \ 2p^{-1}P_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.20                    | $0.54\pm0.19$                                                          | 125.1                                             |                               |
| 15         | 8.97                            | 8.98                               | Fe xxII            | $2s^2({}^1S)4d \; {}^2D_{3/2} \rightarrow 2s^2 \; 2p \; {}^2P_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.10                    | $0.35\pm0.18$                                                          | 120.5                                             |                               |
| 16         | 9.17                            | 9.17                               | Mg xi              | $1s \ 2p \ {}^1P_1 \rightarrow 1s^2 \ {}^1S_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.80                    | $1.42 \pm 0.21$                                                        | 88.7                                              | 1, 2                          |
| 17a        | 9.23                            | 9.23                               | Mg xi              | $1s \ 2p \ {}^{3}P_{2} \rightarrow 1s^{2} \ {}^{1}S_{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.80                    | $0.42 \pm 0.16$                                                        | 81.6                                              |                               |
| 17b        |                                 | 9.23                               | Mg xi              | $\frac{1s}{2p} \frac{2p}{s} \frac{3P_1}{p_1} \rightarrow \frac{1s^2}{s} \frac{1S_0}{s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.80                    |                                                                        |                                                   | •••                           |
| 18         | 9.31                            | 9.31                               | Mg xi              | $1s 2s {}^{3}S_{1} \rightarrow 1s^{2} {}^{3}S_{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.80                    | $0.69 \pm 0.18$                                                        | //.1                                              |                               |
| 19a        | 9.48                            | 9.48                               | Fe XXI             | $2s^{2} 2p 4d {}^{2}D_{1} \rightarrow 2s^{2} 2p^{2} {}^{3}P_{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /.05                    | $0.2/\pm 0.16$                                                         | 69.4                                              |                               |
| 190        |                                 | 9.48                               | Ne x               | $\frac{Sp}{r_{3/2}} \xrightarrow{P_{3/2}} \frac{1s}{r_{1/2}} \frac{S_{1/2}}{s_{1/2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.80                    | •••                                                                    |                                                   |                               |
| 20a        | 9.70                            | 9.40                               | Ne x               | $3p  1_{1/2} \rightarrow 13  S_{1/2}$<br>$4p  ^2P_{2/2} \rightarrow 1s  ^2S_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.80                    | $0.99 \pm 0.19$                                                        | 85.9                                              | 1                             |
| 200<br>20h | 2.70                            | 9.71                               | Nex                | $4p^{2}P_{1/2} \rightarrow 1s^{2}S_{1/2}$ $4p^{2}P_{1/2} \rightarrow 1s^{2}S_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.80                    | 0.77 ± 0.17                                                            | 00.9                                              | 1                             |
| 21a        | 9.96                            | 9.97                               | Ni xxv             | $2s 3d {}^{1}D_{2} \rightarrow 2s 2p {}^{1}P_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.30                    | $0.21 \pm 0.15$                                                        | 84.0                                              | 1                             |
| 21b        |                                 | 9.98                               | Ni xix             | $2p^5 4d^{-1}P_1 \rightarrow 2p^{6-1}S_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.90                    |                                                                        |                                                   |                               |
| 22a        | 10.02                           | 10.02                              | Na xi              | $2p^2 P_{3/2} \rightarrow 1s^2 S_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.90                    | $0.61\pm0.17$                                                          | 86.5                                              | 1                             |
| 22b        |                                 | 10.03                              | Na xi              | $2p  {}^{2}P_{1/2} \rightarrow 1s  {}^{2}S_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.90                    |                                                                        |                                                   |                               |
| 23a        | 10.24                           | 10.24                              | Ne x               | $3p {}^{2}P_{3/2} \rightarrow 1s {}^{2}S_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.80                    | $1.36\pm0.21$                                                          | 81.6                                              | 1                             |
| 23b        |                                 | 10.24                              | Ne x               | $3p \ ^2P_{1/2} \rightarrow 1s \ ^2S_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.80                    |                                                                        |                                                   |                               |
| 24         | 10.62                           | 10.62                              | Fe xxiv            | $1s^2 \ 3p^2 P_{3/2} \to 1s^2 \ 2s^2 S_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.30                    | $0.97\pm0.19$                                                          | 72.1                                              | 1                             |
| 25         | 10.66                           | 10.66                              | Fe xxiv            | $1s^2 \ 3p \ ^2P_{1/2} \rightarrow 1s^2 \ 2s \ ^2S_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.30                    | $0.63\pm0.18$                                                          | 71.4                                              | 1                             |
| 26         | 10.98                           | 10.98                              | Fe xxiii           | $2s \ 3p \ ^1P_1 \rightarrow 2s^2 \ ^1S_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.20                    | $0.83\pm0.18$                                                          | 63.4                                              | 1                             |
| 27a        | 11.02                           | 11.02                              | Fe xxiii           | $2s \ 3p \ ^3P_1 \rightarrow 2s^2 \ ^1S_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.20                    | $1.06\pm0.19$                                                          | 62.5                                              | 1                             |
| 27b        |                                 | 11.03                              | Fe xxiv            | $1s^2 \ 3d \ ^2D_{3/2} \rightarrow 1s^2 \ 2p \ ^2P_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.30                    |                                                                        |                                                   |                               |
| 28a        | 11.18                           | 11.17                              | Fe xxiv            | $1s^2 \ 3d \ ^2D_{5/2} \rightarrow 1s^2 \ 2p \ ^2P_{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.30                    | $0.87 \pm 0.19$                                                        | 56.9                                              | 1                             |
| 28b        |                                 | 11.19                              | Fe xxiv            | $1s^2 \ 3d \ ^2D_{3/2} \rightarrow 1s^2 \ 2p \ ^2P_{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.30                    |                                                                        |                                                   |                               |
| 29         | 11.43                           | 11.43                              | Fe xxiv            | $1s^2 \ 3s \ 2S_{1/2} \rightarrow 1s^2 \ 2p \ 2P_{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.30                    | $0.59 \pm 0.18$                                                        | 55.5<br>55.2                                      | 1                             |
| 30a        | 11.44                           | 11.44                              | Fe xxiii           | $2s \; 3a \; ^{2}D_{3} \rightarrow 2s \; 2p \; ^{2}P_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.15                    | $0.40 \pm 0.17$                                                        | 55.2                                              | 1                             |
| 21         | 11 54                           | 11.44                              | No IV              | $2s 2p(P) sp  s_{3/2} \to 2s  2p  P_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.10                    | $0.57 \pm 0.16$                                                        | 52.5                                              |                               |
| 32         | 11.54                           | 11.55                              | Fe yym             | $13 \ Sp \ I_1 \rightarrow 13 \ S_0$<br>$2s \ 3d \ D_2 \rightarrow 2s \ 2n \ P_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.20                    | $1.26 \pm 0.21$                                                        | 49.9                                              | 1                             |
| 33         | 11.74                           | 11.74                              | Ге ххи<br>Бе ххи   | $2s^{2} ({}^{1}S) 3d^{2}D_{2} \rightarrow 2s^{2} 2n^{2}P_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.20                    | $1.20 \pm 0.21$<br>$1.28 \pm 0.21$                                     | 49.9                                              | 1                             |
| 34a        | 11.93                           | 11.92                              | Fe xxii            | $2s^{2} (1S) 3d^{2}D_{5/2} \rightarrow 2s^{2} 2p^{2}P_{3/2}$ $2s^{2} (1S) 3d^{2}D_{5/2} \rightarrow 2s^{2} 2p^{2}P_{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.10                    | $0.46 \pm 0.15$                                                        | 47.0                                              | 1                             |
| 34b        |                                 | 11.93                              | Fe xxII            | $2s^2 (^1S) 3d ^2D_{3/2} \rightarrow 2s^2 2p ^2P_{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.10                    |                                                                        |                                                   |                               |
| 34c        |                                 | 11.94                              | Fe xxi             | $2s \ 2p^2 \ (^4P) \ 3p \ ^3D_1 \rightarrow 2s^2 \ 2p^2 \ ^3P_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.10                    |                                                                        |                                                   |                               |
| 35a        | 12.13                           | 12.12                              | Fe xvii            | $2p^{5} 4d^{-1}P_{1} \rightarrow 2p^{6-1}S_{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.80                    | $7.13\pm0.37$                                                          | 42.6                                              | 1, 2                          |
| 35b        |                                 | 12.13                              | Ne x               | $2p \ ^2P_{3/2} \to 1s \ ^2S_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.80                    |                                                                        |                                                   |                               |
| 35c        |                                 | 12.14                              | Ne x               | $2p \ ^2P_{1/2} \rightarrow 1s \ ^2S_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.80                    |                                                                        |                                                   |                               |
| 36         | 12.27                           | 12.26                              | Fe xvii            | $2p^5 \ 4d^{-3}D_1 \rightarrow 2p^{6-1}S_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.80                    | $0.74\pm0.19$                                                          | 41.3                                              | 1                             |
| 37         | 12.29                           | 12.28                              | Fe xxi             | $2s^2 \ 2p \ 3d \ ^3D_1 \rightarrow 2s^2 \ 2p^2 \ ^3P_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.00                    | $1.06\pm0.20$                                                          | 41.1                                              | 1, 2                          |
| 38a        | 12.83                           | 12.82                              | Fe xx              | $2s^2 2p^2({}^{3}P)3d {}^{4}P_{5/2} \rightarrow 2s^2 2p^3 {}^{4}S_{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.00                    | $1.18\pm0.18$                                                          | 35.0                                              | 1                             |
| 38b        |                                 | 12.82                              | Fe xx              | $2s^{2} 2p^{2}({}^{3}P)3d {}^{4}P_{3/2} \rightarrow 2s^{2} 2p^{3} {}^{4}S_{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.00                    |                                                                        |                                                   |                               |
| 38c        |                                 | 12.82                              | Fe xxi             | $2s \ 2p^2(^{T}P) 3d \ ^{S}P_2 \rightarrow 2s \ 2p^3 \ ^{S}D_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.00                    |                                                                        |                                                   |                               |
| 38d        | •••                             | 12.83                              | Fe xx              | $2s^2 2p^2(^{\circ}P)3d ^{\circ}P_{1/2} \to 2s^2 2p^{\circ} {}^{4}S_{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.00                    |                                                                        |                                                   |                               |

## HETGS OBSERVATION OF PZ TEL

TABLE 1—Continued

| Label | $\lambda_{obs}^{a}$ (Å) | $\begin{array}{c} \lambda_{\mathrm{pred}}{}^{\mathrm{a}} \\ \mathrm{(\AA)} \end{array}$ | Ion      | Transition (upper $\rightarrow$ lower)                                     | $\log T_{\max}^{b}$ (K) | $\begin{array}{c} (\text{Count Rates } \pm \sigma)^{\text{c}} \\ (\text{counts } \text{ks}^{-1}) \end{array}$ | Effective Area <sup>d</sup><br>(cm <sup>2</sup> ) | $\mathrm{EM}(T)^{\mathrm{e}}$ |
|-------|-------------------------|-----------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------|
| 39a   | 13.45                   | 13.45                                                                                   | Ne ix    | $1s \ 2p \ ^1P_1 \rightarrow 1s^2 \ ^1S_0$                                 | 6.60                    | $1.74\pm0.24$                                                                                                 | 28.4                                              | 1, 2                          |
| 39b   |                         | 13.46                                                                                   | Fe xix   | $2p^{3}(^{2}D)3d \ ^{3}D_{1} \rightarrow 2s^{2} \ 2p^{4} \ ^{3}P_{0}$      | 6.90                    |                                                                                                               |                                                   |                               |
| 39c   |                         | 13.46                                                                                   | Fe xix   | $2p^{3}(^{2}D)3d^{3}S_{1} \rightarrow 2s^{2} 2p^{4} {}^{3}P_{2}$           | 6.90                    |                                                                                                               |                                                   |                               |
| 40a   | 13.51                   | 13.51                                                                                   | Fe xxi   | $2s \ 2p^2(^4P)3s \ ^3P_0 \rightarrow 2s \ 2p^3 \ ^3D_1$                   | 7.00                    | $1.30\pm0.19$                                                                                                 | 27.8                                              | 1                             |
| 40b   |                         | 13.52                                                                                   | Fe xix   | $2p^{3}(^{2}D)3d^{3}D_{3} \rightarrow 2s^{2} 2p^{4} {}^{3}P_{2}$           | 6.90                    |                                                                                                               |                                                   |                               |
| 40c   |                         | 13.53                                                                                   | Fe xix   | $2p^{3}(^{2}D)3d^{3}D_{2} \rightarrow 2s^{2}2p^{4}{}^{3}P_{2}$             | 6.90                    |                                                                                                               |                                                   |                               |
| 41a   | 13.55                   | 13.55                                                                                   | Fe xix   | $2p^{3}(^{2}P)3d^{3}D_{2} \rightarrow 2s^{2} 2p^{4} {}^{3}P_{1}$           | 6.90                    | $0.46\pm0.15$                                                                                                 | 27.4                                              |                               |
| 41b   |                         | 13.55                                                                                   | Ne IX    | $1s \ 2p \ ^3P_1 \to 1s^2 \ ^1S_0$                                         | 6.55                    |                                                                                                               |                                                   |                               |
| 41c   |                         | 13.57                                                                                   | Fe xix   | $2p^{3}(^{2}D)3d {}^{3}P_{2} \rightarrow 2s^{2} 2p^{4} {}^{3}P_{2}$        | 6.90                    |                                                                                                               |                                                   |                               |
| 41d   |                         | 13.57                                                                                   | Fe xxi   | $2s^2 \ 2p \ 3p \ {}^1S_0 \rightarrow 2s \ 2p^3 \ {}^3D_1$                 | 7.00                    |                                                                                                               |                                                   |                               |
| 42a   | 13.70                   | 13.70                                                                                   | Ne IX    | $1s \ 2s^{-3}S_1 \to 1s^{2-1}S_0$                                          | 6.60                    | $0.98\pm0.18$                                                                                                 | 23.9                                              |                               |
| 42b   |                         | 13.70                                                                                   | Fe xix   | $2p^{3}(^{2}D)3d \ ^{3}D_{2} \rightarrow 2s^{2} \ 2p^{4} \ ^{3}P_{1}$      | 6.90                    |                                                                                                               |                                                   |                               |
| 42c   |                         | 13.70                                                                                   | Fe xix   | $2p^{3}(^{2}P)3d \ ^{3}D_{2} \rightarrow 2s^{2} \ 2p^{4} \ ^{1}D_{2}$      | 6.90                    |                                                                                                               |                                                   |                               |
| 43a   | 14.21                   | 14.20                                                                                   | Fe xviii | $2p^4({}^1D)3d \; {}^2D_{5/2} \rightarrow 2s^2 \; 2p^5 \; {}^2P_{3/2}$     | 6.90                    | $1.51\pm0.20$                                                                                                 | 22.7                                              | 1, 2                          |
| 43b   |                         | 14.21                                                                                   | Fe xviii | $2p^4({}^1D)3d \; {}^2P_{3/2} \rightarrow 2s^2 \; 2p^5 \; {}^2P_{3/2}$     | 6.90                    |                                                                                                               |                                                   |                               |
| 44a   | 14.27                   | 14.26                                                                                   | Fe xviii | $2p^4({}^1D)3d \; {}^2S_{1/2} \rightarrow 2s^2 \; 2p^5 \; {}^2P_{3/2}$     | 6.90                    | $0.37\pm0.14$                                                                                                 | 25.1                                              | 1                             |
| 44b   |                         | 14.27                                                                                   | Fe xviii | $2p^4({}^1D)3d \; {}^2F_{5/2} \rightarrow 2s^2 \; 2p^5 \; {}^2P_{3/2}$     | 6.90                    |                                                                                                               |                                                   |                               |
| 44c   |                         | 14.27                                                                                   | Fe xx    | $2s \ 2p^3({}^5S)3s \ {}^4S_{3/2} \rightarrow 2s \ 2p^4 \ {}^4P_{5/2}$     | 7.00                    |                                                                                                               |                                                   |                               |
| 45a   | 14.37                   | 14.36                                                                                   | Fe xviii | $2p^4(^1D)3d^2D_{3/2} \rightarrow 2s^2 2p^{5/2}P_{1/2}$                    | 6.90                    | $0.52\pm0.15$                                                                                                 | 25.3                                              | 1                             |
| 45b   |                         | 14.37                                                                                   | Fe xviii | $2p^4({}^3P)3d \ {}^2D_{5/2} \rightarrow 2s^2 \ 2p^5 \ {}^2P_{3/2}$        | 6.90                    |                                                                                                               |                                                   |                               |
| 46    | 14.53                   | 14.53                                                                                   | Fe xviii | $2p^4({}^3P)3d \; {}^2F_{5/2} \rightarrow 2s^2 \; 2p^5 \; {}^2P_{3/2}$     | 6.90                    | $0.33\pm0.13$                                                                                                 | 24.2                                              | 1                             |
| 47    | 14.55                   | 14.55                                                                                   | Fe xviii | $2p^4({}^3P)3d \; {}^4P_{3/2} \rightarrow 2s^2 \; 2p^5 \; {}^2P_{3/2}$     | 6.90                    | $0.18\pm0.13$                                                                                                 | 24.0                                              | 1                             |
| 48a   | 14.60                   | 14.58                                                                                   | Fe xviii | $2p^4({}^3P)3d {}^4P_{1/2} \rightarrow 2s^2 2p^5 {}^2P_{3/2}$              | 6.90                    | $0.19\pm0.12$                                                                                                 | 23.4                                              |                               |
| 48b   |                         | 14.61                                                                                   | Fe xviii | $2p^4({}^3P)3d {}^2P_{3/2} \rightarrow 2s^2 {}^2p^5 {}^2P_{1/2}$           | 6.90                    |                                                                                                               |                                                   |                               |
| 49a   | 14.67                   | 14.67                                                                                   | Fe xix   | $2p^{3}(^{2}D)3s \ ^{3}D_{3} \rightarrow 2s^{2} \ 2p^{4} \ ^{3}P_{2}$      | 6.90                    | $0.27\pm0.13$                                                                                                 | 23.7                                              | 1                             |
| 49b   |                         | 14.67                                                                                   | Fe xviii | $2p^4({}^3P)3d {}^2D_{3/2} \rightarrow 2s^2 2p^5 {}^2P_{1/2}$              | 6.90                    |                                                                                                               |                                                   |                               |
| 50    | 15.01                   | 15.02                                                                                   | Fe xvII  | $2p^5 3d^{-1}P_1 \rightarrow 2p^{6-1}S_0$                                  | 6.75                    | $1.85\pm0.23$                                                                                                 | 19.4                                              | 1, 2                          |
| 51    | 15.08                   | 15.08                                                                                   | Fe xix   | $2s \ 2p^4({}^4P)3s \ {}^3P_2 \rightarrow 2s \ 2p^5 \ {}^3P_2$             | 6.90                    | $0.31\pm0.13$                                                                                                 | 20.0                                              | 1                             |
| 52a   | 15.18                   | 15.18                                                                                   | O VIII   | $4p {}^{2}P_{3/2} \rightarrow 1s {}^{2}S_{1/2}$                            | 6.50                    | $0.29\pm0.13$                                                                                                 | 19.5                                              | 1                             |
| 52b   |                         | 15.18                                                                                   | O VIII   | $4p^2 P_{1/2} \rightarrow 1s^2 S_{1/2}$                                    | 6.50                    |                                                                                                               |                                                   |                               |
| 52c   |                         | 15.20                                                                                   | Fe xix   | $2p^{3}({}^{4}S)3s {}^{5}S_{2} \rightarrow 2s^{2} 2p^{4} {}^{3}P_{2}$      | 6.90                    |                                                                                                               |                                                   |                               |
| 53    | 15.26                   | 15.26                                                                                   | Fe xvII  | $2p^5 3d^{-3}D_1 \rightarrow 2p^{6-1}S_0$                                  | 6.75                    | $0.44\pm0.14$                                                                                                 | 18.1                                              | 1                             |
| 54a   | 16.00                   | 16.00                                                                                   | Fe xviii | $2p^4({}^3P)3s {}^2P_{3/2} \rightarrow 2s^2 2p^5 {}^2P_{3/2}$              | 6.90                    | $1.00\pm0.17$                                                                                                 | 16.4                                              | 1                             |
| 54b   |                         | 16.01                                                                                   | O VIII   | $3p^{2}P_{3/2} \rightarrow 1s^{2}S_{1/2}$                                  | 6.50                    |                                                                                                               |                                                   |                               |
| 54c   |                         | 16.01                                                                                   | O VIII   | $3p^2 P_{1/2} \rightarrow 1s^2 S_{1/2}$                                    | 6.50                    |                                                                                                               |                                                   |                               |
| 55    | 16.08                   | 16.07                                                                                   | Fe xviii | $2p^4({}^3P)3s \; {}^4P_{5/2} \rightarrow 2s^2 \; 2p^5 \; {}^2P_{3/2}$     | 6.90                    | $0.52\pm0.14$                                                                                                 | 16.1                                              | 1                             |
| 56    | 16.11                   | 16.12                                                                                   | Fe xix   | $2p^{3}(^{2}D)3p \ ^{3}P_{2} \rightarrow 2s \ 2p^{5} \ ^{3}P_{2}$          | 6.90                    | $0.04\pm0.09$                                                                                                 | 16.0                                              |                               |
| 57    | 16.16                   | 16.17                                                                                   | Fe xviii | $2s 2p^{5}({}^{3}P)3s {}^{2}P_{3/2} \rightarrow 2s 2p^{6} {}^{2}S_{1/2}$   | 6.90                    | $0.25\pm0.12$                                                                                                 | 15.7                                              | 1                             |
| 58    | 16.77                   | 16.78                                                                                   | Fe xvII  | $2p^5 3s^3 P_1 \rightarrow 2p^{6-1}S_0$                                    | 6.70                    | $0.83\pm0.16$                                                                                                 | 12.4                                              | 1                             |
| 59    | 17.05                   | 17.05                                                                                   | Fe xvii  | $2p^5 \ 3s^{-1}P_1 \rightarrow 2p^{6-1}S_0$                                | 6.70                    | $0.96 \pm 0.17$                                                                                               | 11.7                                              | 1                             |
| 60    | 17.09                   | 17.10                                                                                   | Fe xvii  | $2p^5 3s {}^3P_2 \rightarrow 2p^6 {}^1S_0$                                 | 6.70                    | $0.91\pm0.17$                                                                                                 | 11.1                                              | 1                             |
| 61a   | 18.97                   | 18.97                                                                                   | O viii   | $2p \ ^2P_{3/2} \rightarrow 1s \ ^2S_{1/2}$                                | 6.50                    | $2.44 \pm 0.24$                                                                                               | 7.2                                               | 1, 2                          |
| 61b   |                         | 18.97                                                                                   | O viii   | $2p  {}^{2}P_{1/2} \rightarrow 1s  {}^{2}S_{1/2}$                          | 6.50                    |                                                                                                               |                                                   | ,                             |
| 62    | 21.60                   | 21.60                                                                                   | O VII    | $1s 2p \stackrel{1}{}^{1}P_{1} \rightarrow 1s^{2} \stackrel{1}{}^{1}S_{0}$ | 6.30                    | $0.13\pm0.10$                                                                                                 | 3.3                                               | 1, 2                          |
| 63a   | 24.77                   | 24.78                                                                                   | N VII    | $2p  {}^2P_{3/2} \rightarrow 1s  {}^2S_{1/2}$                              | 6.30                    | $0.12\pm0.10$                                                                                                 | 3.0                                               | 1                             |
| 63b   |                         | 24.78                                                                                   | N VII    | $2p \ ^2P_{1/2} \rightarrow 1s \ ^2S_{1/2}$                                | 6.30                    |                                                                                                               |                                                   |                               |

<sup>a</sup> Observed and predicted (CHIANTI database) wavelengths. In the cases of unresolved blends, identified by the same label number, we list the main components in order of increasing predicted wavelength.

Temperature of maximum emissivity.

<sup>c</sup> Count rates with uncertainties at the 68% confidence level. In the cases of unresolved blends, identified by the same label number, we report only the total line count rates. <sup>d</sup> MEG first-order effective area, needed to convert the measured count rate to flux.

<sup>e</sup> Lines selected to derive the emission measure distribution with approach 1 or 2.

proposed by Kashyap & Drake (1998), which performs a search in the EM(T) parameter space using a Monte Carlo Markov chain method, with the aim of maximizing the probability of obtaining equal model and observed line fluxes. Moreover, we have also used two different methods for the abundance determination so that the two approaches are effectively independent. One of the aims of this is to compare the results from the different approaches in order to find which results are the least affected by the methods and hence more robust. Hereafter, we will refer to the first selection as approach 1, and to the second as approach 2.

### 3.1.1. Approach 1

The first approach is based on the use of all lines strong enough to yield a useful flux measurement and that are also reasonably isolated, density independent, and not affected by identification problems. With this choice, the EM(T) analysis is based on the most reliable line fluxes among those

With this choice we are able to derive, besides the EM(T), the abundances relative to that of iron of all the chemical elements for which at least one line has been included in the selection. The abundance reconstruction is performed simultaneously with the EM(T) as follows: we first used only the selected iron lines to obtain an initial EM(T); we then added lines of other elements, one element at a time, in order to obtain a new EM(T) and the abundances of the involved elements relative to Fe. At each step, we kept the previous set of EM(T) and abundances as the starting point for the new reconstruction. The sequence of elements has been established in order to gradually extend the temperature range where the EM(T) is constrained. Finally, the Fe abundance has been evaluated by comparing the observed continuum with the predictions based on different metallicity values (see Argiroffi et al. 2003 for more details).

In principle, this selection criterion allows us to reach the finest temperature resolution in the EM(T) because of the large number of lines involved. While many of the lines have emissivity functions that peak at the same  $T_{max}$ , these emissivity functions can have significantly different shapes and hence can provide more information on the structure of the EM(T) than a single line at the same temperature. Of course, this assumption does depend on there not being significant errors in the emissivity functions of the included lines that might instead lead to distortions of the derived EM(T) relative to its true form.

#### 3.1.2. Approach 2

The second approach is based on the use of lines produced by He- and H-like ions and has been proposed by Schmitt & Ness (2004) and J. J. Drake (2004, in preparation). This choice is motivated by the simplicity of these ions and the fact that they are likely to have more reliable emissivity functions than lines produced by ions with a larger number of electrons, and in particular the Fe lines. Note that by adopting this selection it becomes necessary to separate the EM(T)reconstruction from the abundance evaluation because these quantities are more critically correlated than in the case of approach 1. This is because there is no element, such as iron in approach 1, whose lines cover the whole temperature range. In order to separate the EM(T) and abundance reconstruction, we have used the flux ratios of the He-like triplet resonance line to the H-like Ly $\alpha$  line for each of the different elements for which these lines have been significantly detected. In addition to these line ratios, we have also included three prominent Fe lines for a better sampling of the temperature range. In the case of PZ Tel, the lines selected are marked in the last column of Table 1.

In applying this method, we also included measurements of the continuum flux at 2.4–3.4, 5.1–6.1, and 19–20 Å. Fluxes were obtained by summing the counts in each interval. We have checked that no strong line features were present in these intervals, in both the observed and predicted spectra. These continuum measurements serve two purposes. First, they provide additional temperature information, based on the falloff of the dominant bremsstrahlung continuum toward shorter wavelengths. Second, they provide a normalization for the EM(T) since our approach based on line ratios described above provides only an estimate of the *shape* of the function. An absolute measurement of EM(T) also enables us to express element abundances relative to hydrogen. Element abundances were determined when a satisfactory EM(T) had been derived by comparing predicted and observed line fluxes for each element.

This line-ratio method was developed by J. J. Drake (2004, in preparation) in order to investigate coronal element abundances in a large sample of stars. The H- and He-like resonance transitions of the abundant elements N, O, Ne, Mg, and Si are the brightest lines in coronal spectra and so should be detected in all stars for which well-exposed spectra have been obtained. Thus, one advantage of this method is that the same analysis using the same lines can be performed on many stars, limiting any systematic bias caused by star-to-star line selection differences. One disadvantage, at least in principle, is that the line emissivities of He- and H-like ions have in general a larger width in temperature than those of, for example, iron lines. Any fine structure in the EM(T) function will therefore be more likely to be lost in this method than in an approach using a more extensive line list, such as our approach 1.

#### 4. RESULTS

#### 4.1. Emission Measure Distribution and Abundances

Considering the formation temperatures of the available spectral lines listed in Table 1, we have explored the EM(T) in the log T range 6.0–7.5, with a bin size of  $\Delta \log T = 0.1$ .

In Figure 3, we show the EM(T) obtained with the two different methods and line lists, while in Table 2 and Figure 4 we report the derived abundances. As explained in § 3.1, approach 1 compares the observed and predicted continuum level in order to evaluate the iron abundance and hence the overall plasma metallicity. Thus, we have not assigned an error bar to the Fe abundance in Figure 4. This comparison yields an iron abundance of ~0.3 times the currently accepted solar value (Grevesse & Sauval 1998). Note that the iron abundance so derived plays the role of a global factor both in the EM(T) and in the abundance values derived with approach 1.

The O, Ne, Mg, Al, Si, S, and Fe abundance estimations in approach 2 were performed using the lines that were used in



Fig. 3.—Emission measure distribution EM(T) of PZ Tel derived with the two criteria introduced in § 3.1.

|         | ,                           |                                |                             |                                |  |  |  |
|---------|-----------------------------|--------------------------------|-----------------------------|--------------------------------|--|--|--|
|         | A                           | pproach 1                      | Approach 2                  |                                |  |  |  |
| Element | $A_{ m X}/A_{ m X_{\odot}}$ | A <sub>X</sub>                 | $A_{ m X}/A_{ m X_{\odot}}$ | $A_{\mathrm{X}}$               |  |  |  |
| Na      | $1.2\pm0.4$                 | $(2.6 \pm 0.9) \times 10^{-6}$ | $1.5\pm0.4$                 | $(3.3 \pm 1.0) \times 10^{-6}$ |  |  |  |
| Al      | ≤0.3                        | $\leq 1.0 	imes 10^{-6}$       | $0.6\pm0.3$                 | $(1.7 \pm 0.7) \times 10^{-6}$ |  |  |  |
| Ni      | $\leq 0.5$                  | $\leq 9.5 \times 10^{-7}$      | $0.5\pm0.4$                 | $(9 \pm 6) \times 10^{-7}$     |  |  |  |
| Mg      | $0.28\pm0.03$               | $(1.1 \pm 0.1) \times 10^{-5}$ | $0.34\pm0.03$               | $(1.3 \pm 0.1) \times 10^{-5}$ |  |  |  |
| Fe      | $\sim 0.3$                  | ${\sim}9.7	imes10^{-6}$        | $0.27\pm0.03$               | $(8.5 \pm 0.9) \times 10^{-6}$ |  |  |  |
| Si      | $0.22\pm0.03$               | $(7.9 \pm 0.9) 	imes 10^{-6}$  | $0.30\pm0.04$               | $(1.1 \pm 0.1) \times 10^{-5}$ |  |  |  |
| S       | $0.27\pm0.10$               | $(6 \pm 2) \times 10^{-6}$     | $0.38\pm0.13$               | $(8 \pm 3) \times 10^{-6}$     |  |  |  |
| 0       | $0.47\pm0.06$               | $(3.1 \pm 0.4) \times 10^{-4}$ | $0.41\pm0.08$               | $(2.7 \pm 0.5) \times 10^{-4}$ |  |  |  |
| N       | ≤1.1                        | $\leq 9.4 \times 10^{-5}$      | ≤1.2                        | $\leq 9.7 \times 10^{-5}$      |  |  |  |
| Ne      | $0.57\pm0.04$               | $(6.9\pm 0.5)\times 10^{-5}$   | $0.76\pm0.06$               | $(9.1 \pm 0.8) 	imes 10^{-5}$  |  |  |  |

TABLE 2 Element Abundances  $A_{\rm X} = N_{\rm X}/N_{\rm H}$ 

the EM(T) derivation; the N, Na, and Ni abundances were instead evaluated using their measured line counts listed in Table 1 that were excluded from the EM(T) analysis.

The two emission measure distributions obtained with the two approaches (see §§ 3.1.1 and 3.1.2) are compatible within statistical uncertainties in almost all the bins of the explored temperature range. Both EM(T) distributions show a maximum at log T = 6.9, which is a common feature for active stars (e.g., Drake 1996; Sanz-Forcada et al. 2003a), and also a significant emission measure for log  $T \ge 7$ . However, some differences are present, mainly near log  $T \sim 6.5$  and in the high-temperature tails of the distributions.

Several causes might be responsible for these differences. Errors in the atomic data may yield different solutions if different line sets are used. This is one of the primary motives of our approach 2, which should introduce minimal errors arising from atomic data.

Another problem is due to the fact that the observed line fluxes are related to the EM(T) function through a Fredholm equation of the first type, which has no unique solution (e.g., Craig & Brown 1976). Different EM(T) and abundance sets might then reproduce equally well the observed line fluxes within measurement uncertainties. This nonuniqueness might also be affected by the resolution and amplitude of the temperature grid assumed a priori for the EM(T) reconstruction.



Fig. 4.—Abundances in solar units (Grevesse & Sauval 1998) vs. elements sorted by increasing FIP for both the criteria.

The two different line choices and methods provide consistent abundance values in most cases, indicating that the derived abundances do not depend on small differences in the emission measure distributions. We find a significant discrepancy between the two models only for Si and Ne abundances. These small abundance differences are probably due to the slightly different values of the EM(T) obtained with the two approaches in the temperature range where Si and Ne lines are produced.

In Figures 5 and 6, we show the comparison between observed and predicted line fluxes for both the solutions. From these plots we deduce that, as expected, the EM(T) derived with approach 1 shows a better overall description of the observed line fluxes of PZ Tel than in the other case but the predicted line flux values of the resonance line of the He-like ions and the Ly $\alpha$  line of the H-like ions are more discrepant than those computed with the approach 2 solution (Figs. 5 and 6, *filled circles*). Moreover, we note that the approach 2 solution describes spectral features formed at lower temperatures somewhat better, as represented by a smaller spread between observed and predicted fluxes for log  $T \leq 7.0$ . On the other hand, the approach 1 solution shows a smaller spread between observed and predicted fluxes for log  $T \geq 7.0$ .

Figure 4 shows that the PZ Tel coronal abundances, relative to solar photospheric values (Grevesse & Sauval 1998), do not show a strong FIP dependence but rather show a pattern versus FIP similar to that of other active stars (e.g., Brinkman et al. 2001; Drake et al. 2001; Audard et al. 2003; Sanz-Forcada et al. 2003b): elements at low and high FIP appear enhanced with respect to the medium-FIP elements. It is worth noting that we cannot compute abundance ratios relative to photospheric values because those of PZ Tel are not known; therefore, the *real* abundance-versus-FIP pattern may differ significantly from the one plotted in Figure 4 (e.g., Sanz-Forcada et al. 2004).

Finally we note that, using the flux measured for the Na xI Ly $\alpha$  line at 10.02 Å, we have performed what is to our knowledge the first coronal Na abundance estimate based on X-ray spectra. The Na abundance is useful for constraining the abundance-versus-FIP pattern at low FIP. The identification and subsequent flux estimation of these lines is nontrivial because this spectral region also contains a number of Fe xx and other lines. Ayres et al. (2001) and Phillips et al. (2001) identified the Na xI Ly $\alpha$  line in the HETGS spectra of HR 1099 and Capella, respectively. Sanz-Forcada et al. (2003b, 2004), in the HETGS of AB Dor and  $\lambda$  And, respectively, measured



Fig. 5.—Comparison between observed line fluxes and those predicted by the EM(T) obtained with approach 1. We indicate with the crosses the line fluxes selected for approach 1 and not for approach 2, while the filled circles represent the line fluxes included both in approach 1 and 2.

the flux of a spectral feature at 10.02 Å but did not identify it because of a lack of Na lines in the Astrophysical Plasma Emission Database (APED). Moreover, in the HETGS spectrum of AR Lac, analyzed by Huenemoerder et al. (2003) using APED, this emission line at 10.02 Å is clearly visible and does not appear to be easily attributable to other species, such as Fe xx. In conclusion, we suggest that the spectral feature at 10.02 Å observed in several coronal X-ray spectra is to be identified with the Na xI Ly $\alpha$  line listed in the CHIANTI database.

## 4.2. Electron Density

Estimates of the electron density  $N_e$  can be obtained using He-like triplets (Gabriel & Jordan 1969). These spectral features consist of three lines (resonance r, intercombination i, and forbidden f) produced by transitions from n = 2 to n = 1levels in He-like ions. For the physical conditions of coronal plasmas, the ratio f/i is predominantly sensitive to density, while the ratio (i + f)/r is predominantly sensitive to temperature. Note that the density and the temperature inferred from these lines will be weighted averages of the region in which the relevant triplet is formed.

We have identified and measured in the MEG spectrum of PZ Tel the He-like triplets of Ne IX, Mg XI, and Si XIII ions, while for the O VII, Al XII, and S XV ions only the resonance line is measurable (see Table 1). In Table 3, we report the f/i ratios, together with the derived electron densities  $N_e$  and 1  $\sigma$  uncertainties. Note that, because of the unresolved blends of Ne IX *i* and *f* lines with Fe XIX lines, we have evaluated the Ne IX f/i ratio by subtracting the predicted fluxes of the Fe XIX lines from the measured values. We have obtained density

 TABLE 3

 Electron Densities Calculated from the He-like Triplets

| Ion     | $\log T_{\max}$ | f/i           | $\log N_e \ (\rm cm^{-3})$ |
|---------|-----------------|---------------|----------------------------|
| Ne 1x   | 6.6             | $3.0 \pm 1.4$ | <11.8                      |
| Mg xi   | 6.8             | $1.7\pm0.8$   | $12.6\pm0.6$               |
| Si xiii | 7.0             | $3.5\pm2.1$   | <13.5                      |



Fig. 6.—Comparison between observed line fluxes and those predicted by the EM(T) obtained with approach 2. The crosses and filled circles are as in Fig. 5.

values from Mg XI, while from Ne IX and Si XIII we have derived only an upper limit. We also point out here that our measured f/i ratios have uncertainties of more than 40% and are all consistent with their respective low-density limits at the 2  $\sigma$  level.

## 5. DISCUSSION AND CONCLUSIONS

It is interesting to compare the coronal properties of PZ Tel found here with those of TW Hya and AB Dor, which are slightly younger and older, respectively, than PZ Tel. TW Hya is a classical T Tauri star with a circumstellar disk and an age of ~10 Myr (Webb et al. 1999). AB Dor is a K1 single star that has almost arrived on the main sequence. Collier Cameron & Foing (1997) have estimated the age of AB Dor to be in the range 20–30 Myr, while Favata et al. (1998) derived a slightly older age of about  $\gtrsim$ 35 Myr. In Figure 7, we show the positions on the H-R diagram of these three stars and have also superposed the evolutionary tracks from Ventura et al.

2 4 1.0Ma ARAC ž 0.8Ma тw HYA 0.7M<sub>@</sub> 8 0.6Me 10 1.0 1.2 0.4 0.6 0.8 1.4 B-V

FIG. 7.—H-R diagram for PZ Tel, TW Hya, and AB Dor. Solid lines represent the evolutionary tracks of Ventura et al. (1998) evaluated for Z = 0.01. Dotted lines represent the isochrones at 10<sup>6</sup>, 10<sup>7</sup>, and 10<sup>8</sup> yr.

(1998) with Z = 0.01. The values of  $M_V$  and B-V have been derived from the *Hipparcos* catalog (Perryman et al. 1997). Note however that TW Hya cannot be placed accurately on the H-R diagram because of the large variability observed in its color indices (Rucinski & Krautter 1983; Mekkaden 1998). Rucinski & Krautter (1983) found that the spectrum of TW Hya is compatible with a K7 V star, and we have therefore assumed a B-V color index of 1.30 (Johnson 1966). The positions of these stars on the H-R diagram (Fig. 7) confirm that TW Hya and AB Dor are in evolutionary stages just preceding and following the stage of PZ Tel.

The coronal emission of TW Hya and AB Dor has been studied via Chandra HETGS observations by Kastner et al. (2002), Sanz-Forcada et al. (2003b), and D. García-Alvarez (2004, in preparation). Comparison with our present results shows that PZ Tel is very similar to AB Dor in its emission measure distribution, element abundances, and electron densities. TW Hya, however, appears to be very different in many respects. Its emission measure distribution peaks at  $\log T =$ 6.5 and there is no evidence of plasma at log  $T \ge 7.0$  in the observed spectrum, while PZ Tel and AB Dor have their maxima at log T = 6.9 and both exhibit considerable emission measure at higher temperatures. There are also abundance differences, especially regarding the Ne/Fe ratio. In TW Hya, Ne/Fe is larger than the solar value by a factor of  $\sim 10$ , whereas for AB Dor and PZ Tel the enhancements are less extreme, with factors of  $\sim 5$  and  $\sim 2$ , respectively.<sup>5</sup>

Finally, the electron densities of the emitting plasma of TW Hya, derived from the O vii and Ne ix He-like triplets, turn out to be much higher than those of PZ Tel and AB Dor. The differences in densities between PZ Tel, AB Dor, and TW Hya can be appreciated in Figure 8, where we show their observed MEG spectra in the region of the Ne IX lines. We show the Ne IX triplet region because it is the only triplet for which the observed spectra have sufficient S/N for all three stars (in fact, the O vII intercombination and forbidden lines in the spectrum of PZ Tel are not measurable). It is known that the Ne IX triplet is complicated by blends with highly ionized Fe lines that are clearly visible in the PZ Tel spectrum, e.g., at 13.51 Å (see also Table 1 for more detail). The Fe xix line at  $\sim$ 13.51 Å in the TW Hya spectrum is instead not observable because of the peculiar Ne/Fe abundance ratio and the relatively low temperature of the peak in EM(T) for this star. However, it is still quite clear that the relative intensities of the *i* and *f* lines for PZ Tel and AB Dor are very different from those of TW Hya. In fact, the f/i ratio is  $2.9 \pm 0.3$  for AB Dor,  $3.0 \pm 1.4$  for PZ Tel, and  $0.44 \pm 0.12$  for TW Hya, implying electron density values of  $\log N_e \sim 11$ , <12, and  $\sim$ 13, respectively.

As noted in § 1, Kastner et al. (2002) attributed the dominance of plasma at a temperature of  $3 \times 10^6$  K, with high electron densities of order log  $N_e \sim 13$  in TW Hya, to accretion rather than a magnetically heated corona. In the accretion scenario, the plasma is heated in a shock at the stellar surface. The strong difference we see here between the X-ray emission of the accreting TW Hya and nonaccreting PZ Tel supports these conclusions. However, there are two outstanding questions that the accretion scenario does not answer: (1) why is the Ne/Fe abundance in the shocked plasma similar to that seen in some coronally active RS CVn systems (see, e.g.,



FIG. 8.—Comparison of the Ne IX spectral region of PZ Tel, AB Dor, and TW Hya. For each star, we have plotted the first-order spectra of *Chandra* MEG.

Drake et al. 2001; Huenemoerder et al. 2001) and so different from the presumed value in the accreting circumstellar material? And (2) why is there very little trace of underlying coronal activity similar to that in PZ Tel?

If the Ne/Fe abundance seen in TW Hya is indeed representative of the accreting material, then significant compositional fractionation must be occurring in the circumstellar disk or in the inner disk-magnetosphere region from which the accreting plasma falls onto the star. The lack or weakness of "normal" coronal activity on TW Hya might logically be associated with accretion activity or the presence of substantial disk material close in to the star itself. In this respect, however, it seems that TW Hya might be unusual among accreting CTTSs. X-ray studies at low resolution of large samples of PMS stars (Tsujimoto et al. 2002; Nakajima et al. 2003) have indicated that CTTSs coronal spectra tend to be dominated by plasma at log  $T \sim 7.5$ , much hotter than in the case of TW Hya. Note however that CTTSs are often highly absorbed and therefore the high difference in temperature could be the result of a selection bias because of their distances larger than that of TW Hya.

Our study of PZ Tel shows it to be much more similar in EM(T), abundances, and electron densities to AB Dor than to TW Hya. Because PZ Tel is younger than AB Dor, our results indicate that coronal properties do not change appreciably during the evolution of PMS stars from the post–T Tauri phase to the main sequence. On the other hand, if TW Hya is assumed to be representative of CTTSs it follows that as soon as disk dissipation and significant accretion processes have ended the coronal structure quickly evolves to that of any other star of similar spectral type and rotation rate.

<sup>&</sup>lt;sup>5</sup> For the Ne/Fe abundance ratio of PZ Tel, we have used results obtained with approach 1. Approach 2 gives a Ne/Fe abundance ratio  $\sim$ 3, which also tends to confirm the observed trend.

C. A., A. M., G. P., and S. S. acknowledge partial support for this work by Agenzia Spaziale Italiana and Ministero dell'Istruzione, Università e Ricerca. F. R. H. acknowledges partial support from *Chandra* grant GO3-4009B, as does C. A. during her visit to SAO, where much of this work was carried out. J. J. D. was supported by NASA contracts NAS8-39073 and NAS8-03060 to the *Chandra* X-Ray Center. J. J. D. also thanks the NASA AISRP for providing financial assistance for the development of the PINTofALE package under NASA grant NAG5-9322.

## REFERENCES

- Argiroffi, C., Maggio, A., & Peres, G. 2003, A&A, 404, 1033
- Audard, M., Güdel, M., Sres, A., Raassen, A. J. J., & Mewe, R. 2003, A&A, 398, 1137
- Ayres, T. R., Brown, A., Osten, R. A., Huenemoerder, D. P., Drake, J. J., Brickhouse, N. S., & Linsky, J. L. 2001, ApJ, 549, 554
- Barnes, J. R., Collier Cameron, A., James, D. J., & Donati, J.-F. 2000, MNRAS, 314, 162
- Brinkman, A. C., et al. 2001, A&A, 365, L324
- Coates, D. W., Halprin, L., Sartori, P., & Thompson, K. 1980, Inf. Bull. Variable Stars, 1849, 1
- Collier Cameron, A., & Foing, B. H. 1997, Observatory, 117, 218
- Craig, I. J. D., & Brown, J. C. 1976, A&A, 49, 239
- Drake, J. J. 1996, in ASP Conf. Ser. 109, Cool Stars, Stellar Systems, and the Sun, ed. R. Pallavicini & A. K. Dupree (San Fransisco: ASP), 203
- ——. 2002, in ASP Conf. Ser. 277, Stellar Coronae in the *Chandra* and *XMM-Newton* Era, ed. F. Favata & J. J. Drake (San Fransisco: ASP), 75
- Drake, J. J., Brickhouse, N. S., Kashyap, V., Laming, J. M., Huenemoerder, D. P., Smith, R., & Wargelin, B. J. 2001, ApJ, 548, L81
- Favata, F., Micela, G., Sciortino, S., & D'Antona, F. 1998, A&A, 335, 218
- Feigelson, E. D., & Montmerle, T. 1999, ARA&A, 37, 363
- Feldman, U. 1992, Phys. Scr., 46, 202
- Flaccomio, E., Micela, G., & Sciortino, S. 2003, A&A, 402, 277
- Flower, P. J. 1996, ApJ, 469, 355
- Gabriel, A. H., & Jordan, C. 1969, MNRAS, 145, 241
- Grevesse, N., & Sauval, A. J. 1998, Space Sci. Rev., 85, 161
- Güdel, M., et al. 2001, A&A, 365, L336
- Houk, N. 1978, Michigan Catalogue of Two-Dimensional Spectral Types for the HD Stars (Ann Arbor: Univ. Michigan)
- Huenemoerder, D. P., Canizares, C. R., Drake, J. J., & Sanz-Forcada, J. 2003, ApJ, 595, 1131
- Huenemoerder, D. P., Canizares, C. R., & Schulz, N. S. 2001, ApJ, 559, 1135 Innis, J. L., Coates, D. W., & Thompson, K. 1984, Proc. Astron. Soc. Australia, 5, 540
- Innis, J. L., Thompson, K., & Coates, D. W. 1986, MNRAS, 223, 183

- Johnson, H. L. 1966, ARA&A, 4, 193
  - Kashyap, V., & Drake, J. J. 1998, ApJ, 503, 450

  - Kastner, J. H., Huenemoerder, D. P., Schulz, N. S., Canizares, C. R., &
  - Weintraub, D. A. 2002, ApJ, 567, 434 Mazzotta, P., Mazzitelli, G., Colafrancesco, S., & Vittorio, N. 1998, A&AS,
  - Mazzotta, P., Mazzitelli, G., Colafrancesco, S., & Vittorio, N. 1998, A&AS, 133, 403
  - Mekkaden, M. V. 1998, A&A, 340, 135
  - Mewe, R., Kaastra, J. S., White, S. M., & Pallavicini, R. 1996, A&A, 315, 170
  - Montmerle, T. 2002, in ASP Conf. Ser. 277, Stellar Coronae in the Chandra
  - and XMM-Newton Era, ed. F. Favata & J. J. Drake (San Fransisco: ASP), 173 Nakajima, H., Imanishi, K., Takagi, S., Koyama, K., & Tsujimoto, M. 2003, PASJ, 55, 635
  - Perryman, M. A. C., et al. 1997, A&A, 323, L49
  - Phillips, K. J. H., Mathioudakis, M., Huenemoerder, D. P., Williams, D. R., Phillips, M. E., & Keenan, F. P. 2001, MNRAS, 325, 1500
  - Plucinsky, P. P., et al. 2003, Proc. SPIE, 4851, 89
  - Rucinski, S. M., & Krautter, J. 1983, A&A, 121, 217
  - Sanz-Forcada, J., Brickhouse, N. S., & Dupree, A. K. 2003a, ApJS, 145, 147
  - Sanz-Forcada, J., Favata, F., & Micela, G. 2004, A&A, 416, 281
  - Sanz-Forcada, J., Maggio, A., & Micela, G. 2003b, A&A, 408, 1087
  - Schmitt, J. H. M. M., & Ness, J.-U. 2004, A&A, 415, 1099
  - Soderblom, D. R., King, J. R., & Henry, T. J. 1998, AJ, 116, 396
  - Stelzer, B., & Neuhäuser, R. 2000, A&A, 361, 581
  - Stelzer, B., & Schmitt, J. H. M. M. 2004, A&A, in press
  - Tsujimoto, M., Koyama, K., Tsuboi, Y., Goto, M., & Kobayashi, N. 2002, ApJ, 566, 974
  - Ventura, P., Zeppieri, A., Mazzitelli, I., & D'Antona, F. 1998, A&A, 331, 1011
  - Webb, R. A., Zuckerman, B., Platais, I., Patience, J., White, R. J., Schwartz, M. J., & McCarthy, C. 1999, ApJ, 512, L63
  - Young, P. R., Del Zanna, G., Landi, E., Dere, K. P., Mason, H. E., & Landini, M. 2003, ApJS, 144, 135
  - Zuckerman, B., & Webb, R. A. 2000, ApJ, 535, 959