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The	plasma	confined	in	a	loop	can	be	
described	with	a	1D	hydrodynamic	
model,	with	a	single	coordinate	(z)	along	
the	loop	(e.g.	Reale 2014).
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Modelling	Chromospheric Evaporation
1D	field-aligned	model.

𝜕𝜌
𝜕𝑡 + 𝑣

𝜕𝜌
𝜕𝑧 = −𝜌

𝜕𝑣
𝜕𝑧	 ,	

𝜌
𝜕𝑣
𝜕𝑡 + 𝜌𝑣

𝜕𝑣
𝜕𝑧 = −

𝜕𝑃
𝜕𝑧	 	− 𝜌𝑔∥,

𝜌
𝜕𝜖
𝜕𝑡 + 𝜌𝑣

𝜕𝜖
𝜕𝑧 = −𝑃

𝜕𝑣
𝜕𝑧	 	−

𝜕𝐹1
𝜕𝑧	 + 𝑄(𝑡) 	− 𝑛

6Λ 𝑇 ,

𝑃 = 2𝑘;𝑛𝑇, 𝜖 =
<

=>? @
	.	

𝐹1 = −𝜅B𝑇C/6
EF
EG	

is	the	Spitzer	heat	flux.

Solved	using	a	Lagrangian remap	approach	
(Arber	et	al,	2001),	adapted	for	1D	field-aligned	
hydrodynamics.

Global	3D	
MHD	models.



The	Importance	of	TR	Resolution	(Bradshaw	&	Cargill,	2013)

Difficulty	of	resolving	downward	
heat	flux	is	well	known,

Quantitative	description	by	B&C	
(2013).

Showed	that	lack	of	spatial	resolution	
leads	to	coronal	densities	that	are	far	
too	low.

TR	Resolution	can	be	brute-forced	in	1D.

But	not	in	3D.	So	develop	approximate	
methods	for	use	in	3D.	
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Better	
resolution

Emission	measure	is	proportional	to	𝑛6.

Heat	flux	jumps	across	the	TR. HYDRAD	– fully	resolved	1D	
model	with	an	adaptive	grid.



𝑁G = 500

Unresolved	
Transition	
Region	(UTR)

Integrate	over	the	UTR,	
neglecting	LHS	and	𝑧Q	flux	terms.
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Jump	Condition	Approach
(Johnston	et	al,	2017a,b)

Model	the	unresolved	transition	region	
as	a	discontinuity	using	a	jump	condition.

The	1D	field-aligned	MHD	equations	can	be	
written	in	conserved	form	for	the	total	energy,
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𝑁G = 500	is	
reflective	of	the	
number	of	grid	
points	a	3D	
MHD	code	can	
run	in	a	realistic	
time (500W).

𝑧Q	is	the	base	of	the	TR.

𝑧B	is	the	top	of	the	UTR.	



UTR	Jump	Condition	

𝑁G = 500

UTR
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W + 𝜌BΦB𝑣B = −𝐹1,B + ℓ𝑄 	− ℛ[\].	

Need	to	approximate

Then	solve	for	the	velocity	𝑣B.

Three	scenarios:
Equilibrium	(𝑣B = 0).
Evaporation	(𝑣B > 0).
Draining	(𝑣B < 0).

𝒗𝟎 𝒗𝟎

Impose	corrected	velocity	at	the	
top	of	the	UTR	to	compensate	for	
the	jumping	of	the	heat	flux	
(Johnston	et	al,	2017a,b).
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𝑁G = 500	is	reflective	of	the	number	of	grid	points	
a	3D	MHD	code	can	run	in	a	realistic	time (500W).



Uniform	Heating	- Long	Loop,	Short	Pulse,	Strong	Heating.
Rapid	cooling	since	conductive	
cooling	timescale	scales	as	𝑛/𝑇C/6.

1D	or	3D	simulations	would	give	
very	low	density	with	𝑁G = 500.			

Jump	condition	solution	provides	a	much	
improved	approximation.
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The	peak	is	premature	and	there	
is	no	significant	draining	phase.		
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(Johnston	et	al,	2017a)



Time	Evolution	of	the	
Velocity	&	Density	(Evaporation)

The	corrected	velocity	ensures	
that	the	energy	from	the	heat	flux	
goes	into	driving	the	upflow.	

Long	Loop,	Short	Pulse,	Strong	Heating.
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(Johnston	et	al,	2017a)



Time	Evolution	of	the	
Velocity	&	Density	(Evaporation)

The	corrected	velocity	ensures	
that	the	energy	from	the	heat	flux	
goes	into	driving	the	upflow.	
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90Mm	loop.

Spatial	profile	of	the	heating	is	uniform.

Application	of	the	jump	condition	is	not	
limited	to	a	single	heating	and	cooling	cycle.

Non-Uniform	Heating	– Nanoflare	Train.
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(Johnston	et	al,	2017b)



Non-Uniform	Heating	– Apex	and	Footpoint	Heating.

 apex
 fp1
 fp2

fp1	heating	- footpoint	heating	at	the	base	of	the	corona.	

fp2	heating	- footpoint	heating	at	the	base	of	the	TR.	 𝑄 𝑧 = 𝑄f exp
− 𝑧 − 𝑧B 6

2𝑧f6
.

(Johnston	et	al,	2017b)



Non-Uniform	Heating	– Apex	and	Footpoint	Heating.
Short	Loop,	Short	Pulse,	Strong	Heating.

Despite	the	complexity	of	the	type	of	heating	considered	the	jump	condition	still	performs	well	(Johnston	et.	al	2017b).
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Conclusions

1. The method is physically motivated.

2. Computationally efficient and easy to implement.
The jump condition approach is between 1-2
orders of magnitude faster than fully resolved 1D
models.

3. Get the correct coronal 𝑇	&	𝑛 response.

4. Can be used for active region modelling.

Based on energy conservation.

Eliminates the need for very short time steps since we
do not need to resolve the TR. Good accuracy is
obtained with resolutions compatible with 3D MHD
simulations.

Ensures accurate comparisons between simulations
and observations.

Applicable for the required 𝑇 range and simulation
box size (loop length).
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Detailed	Analysis	of	the	Jump	Condition	Approach	(Johnston	et	al.	2017a,b).


