

Long-period intensity pulsations & coronal rain: manifestation of loops heating properties

Clara Froment

¹Institute of Theoretical Astrophysics, University of Oslo

F. Auchère², G. Aulanier³, Z. Mikić⁴, K. Bocchialini², E. Buchlin², J. Solomon², C. Guennou³, E. Soubrié^{2,5}, R. Oliver⁵, P. Antolin⁶, G.Pelouze², L. Rouppe van der Voort¹

²IAS, Orsay, France; ³LESIA/Observatoire de Paris, Meudon, France; ⁴Predictive Science, Inc., San diego, CA, USA; ⁵Universitat de les Illes Balears, Spain; ⁶University of St. Andrews, UK

8th Coronal Loops Workshop

Clara Froment - Long-period Intensity Pulsations in Coronal Loops

On-disk detections:

New ! Off-limb detections

917 events found in 13 yrs of EIT (195) *Auchère et al. 2014, A&A, 563, A8*

	All events	loop events
QS	45%	5%
AR	54%	95%
Other	1%	0%
Total	917	268

+ 4000 events in 7 yrs of AIA, on-going statistics

Froment 2016, Ph. D. thesis

	193	All bands
QS	44%	33%
AR	56%	67%
Total	1210	3181

- Current explanation for these pulsations: coronal counterpart of thermal non-equilibrium cycles
- Periodic modification of the thermal structure (DEM analysis, Guennou et al 2012a,b)
- · Delay between the temperature and the density
- Cooling from time lag maps (Viall & Klimchuk, 2012 method)

AIA observations from Froment et al. 2015, ApJ, 807, 158

- Current explanation for these pulsations: coronal counterpart of thermal non-equilibrium cycles
- Periodic modification of the thermal structure (DEM analysis, Guennou et al 2012a,b)
- Delay between the temperature and the density
- Cooling from time lag maps (Viall & Klimchuk, 2012 method)

Clara Froment - Long-period Intensity Pulsations in Coronal Loops

Current explanation for these pulsations: coronal counterpart of thermal non-equilibrium cycles

- Periodic modification of the thermal structure (DEM analysis, Guennou et al 2012a,b)
- Delay between the temperature and the density
- Cooling from time lag maps (Viall & Klimchuk, 2012 method)
- Coronal rain: condensations seen in transition region and chromospheric lines (i.e. Antolin et al. 2015, Ignacio Ugarte-Urra's talk)

Current explanation for these pulsations: coronal counterpart of thermal non-equilibrium cycles

- Periodic modification of the thermal structure (DEM analysis, Guennou et al 2012a,b)
- Delay between the temperature and the density
- Cooling from time lag maps (Viall & Klimchuk, 2012 method)
- Coronal rain: condensations seen in transition region and chromospheric lines (i.e. Antolin et al. 2015, Ignacio Ugarte-Urra's talk)

Current explanation for these pulsations: coronal counterpart of thermal non-equilibrium cycles

- Periodic modification of the thermal structure (DEM analysis, Guennou et al 2012a,b)
- Delay between the temperature and the density
- Cooling from time lag maps (Viall & Klimchuk, 2012 method)
- Coronal rain: condensations seen in transition region and chromospheric lines (i.e. Antolin et al. 2015, Ignacio Ugarte-Urra's talk)

- Current explanation for these pulsations: coronal counterpart of thermal non-equilibrium cycles
- Periodic modification of the thermal structure (DEM analysis, Guennou et al 2012a,b)
- Delay between the temperature and the density
- Cooling from time lag maps (Viall & Klimchuk, 2012 method)
- Coronal rain: condensations seen in transition region and chromospheric lines (i.e. Antolin et al. 2015, Ignacio Ugarte-Urra's talk)
- ► AIA obs. of pulsations in loops: consistent with an "incomplete" condensation scenario

However, with AIA, we have only access to the average loop bundle behavior

- Current explanation for these pulsations: coronal counterpart of thermal non-equilibrium cycles
- Periodic modification of the thermal structure (DEM analysis, Guennou et al 2012a,b)
- Delay between the temperature and the density
- Cooling from time lag maps (Viall & Klimchuk, 2012 method)
- Coronal rain: condensations seen in transition region and chromospheric lines (i.e. Antolin et al. 2015, Ignacio Ugarte-Urra's talk)
- ► AIA obs. of pulsations in loops: consistent with an "incomplete" condensation scenario

However, with AIA, we have only access to the average loop bundle behavior

How cold are the condensations related to pulsating loops?

- Importance of loop and heating geometry in loops modelling (*Mikić et al. 2013*): static loops, TNE cycles with « complete » condensations (CC) or « incomplete » condensations (IC)
- Why do these cycles emerge for only some loop bundles?

1D hydrodynamic simulations

Heating parameters scan with 3 loop geometries : pulsating loop, non-pulsating loop and one ad hoc symmetric loop

Constant and stratified heating

$$H(s) = H_0 + H_1(e^{-g(s)\lambda_1} + e^{-g(L-s)\lambda_2})$$

$g(s) = \max(s - \Delta, 0)$ and $\Delta = 5$ Mm

H₁: volumetric heating rate at the footpoints λ_1, λ_2 : scale height for each leg

Clara Froment - Long-period Intensity Pulsations in Coronal Loops

Parameter space study

one slice through the scan cube: one value of heating rate at the footpoints (H $_1$), scanning of scale height at each leg

 Evaporation/condensation cycles only when λ₁ > λ₂ : asymmetric heating

Clara Froment - Long-period Intensity Pulsations in Coronal Loops

Parameter space study

one slice through the scan cube: one value of heating rate at the footpoints (H_1) , scanning of scale height at each leg

 Evaporation/condensation cycles only when λ₁ > λ₂ : asymmetric heating

Conclusions with the 3 loop geometries :

- We can obtain TNE cycles with any loop geometry
- For each loop geometry, the heating conditions are different
- Production of TNE : very sensitive to a combination of loop geometry and heating parameters

Parameter space study

one slice through the scan cube: one value of heating rate at the footpoints (H_1), scanning of scale height at each leg

 Evaporation/condensation cycles only when λ₁ > λ₂ : asymmetric heating

Can explain why we observe TNE cycles only in some loops bundles and not in all

- We can obtain TNE cycles with any loop geometry
- For each loop geometry, the heating conditions are different
- Production of TNE : very sensitive to a combination of loop geometry and heating parameters

Potential evidence of asymmetric heating

Eastern leg of the pulsating loops : a photospheric null-point and many Bald Patches

Froment et al. 2017, ApJ, 835, 272

- ➡ These particular magnetic topologies could favor reconnection
- ➡ It might be evidence an asymmetric heating for these loops

Comparison observation and simulation

incomplete condensations case

Simulation reproducing the best the average behavior of the loop bundle

180 190 200 210 Longitude (degrees)

Synthetic and observed intensities from an IC case

- Mean values around the loop apex
- Synthetic intensities from the AIA response functions (CHIANTI 8.0, Del Zanna et al. 2015)
- ➡ This model can reproduce the long-term behavior of the loop

Synthetic and observed intensities from an IC case

- ➡ Mean values around the loop apex
- Synthetic intensities from the AIA response functions (CHIANTI 8.0, Del Zanna et al. 2015)
- ➡ This model can reproduce the long-term behavior of the loop

To bear in mind :

- ➡ 1D simulations: only one loop, no background/foreground emissions
- strictly constant heating

we can not reproduce the details = mean and long-term behavior

Different types of behavior produced...

... with similar heating conditions

► pulsations in both cases, can be differentiated locally by the temperature drop

Synthetic and observed intensities (CC, IC & Obs.)

- ➡ Different types of behavior produced, here with similar heating conditions
- Both CC and IC cases could be compatible with the observations

Simultaneous coronal rain and intensity pulsations

Simultaneous coronal rain and intensity pulsations

SDO/AIA 335 SDO/AIA171 IRIS/SJI 1400

Clara Froment - Long-period Intensity Pulsations in Coronal Loops

Conclusions

- → Long-period intensity pulsations (several hours) are very common in coronal loops
- ➡ Thermal diagnostics with AIA:
 - TNE cycles of evaporation and condensation
- ➡ Modeling:
 - further strengthens the previous conclusion
 - we can reproduce the observed intensities
 - and can explain why only some loops bundle undergo these pulsations
 - · quasi-continuous footpoint heating can also lead to "static loops"
- Implications for coronal heating: spatial location and timescale

Unification of the observed phenomenon with the coronal rain

Observation of the cycle from corona to transition region

... To go further

- ► Are IC cases related to coronal rain events ?
- ► What are the mechanisms that produce IC?
- ► What fraction of the coronal volume experiences TNE?
- Are the non-pulsating loops and diffuse emission produced by a completely different heating deposition in time and space?

▶ ...

Simultaneous observations of long-period intensity pulsations and coronal rain, periodic coronal rain showers

(see Frédéric Auchère's talk)

Periodic upflows and downflows should be detectable even when no coronal rain is visible

(see Gabriel Pelouze's talk)

... To go further

- ► Are IC cases related to coronal rain events ?
- ► What are the mechanisms that produce IC?
- ► What fraction of the coronal volume experiences TNE?
- Are the non-pulsating loops and diffuse emission produced by a completely different heating deposition in time and space?

▶ ...

Simultaneous observations of long-period intensity pulsations and coronal rain, periodic coronal rain showers

(see Frédéric Auchère's talk)

Periodic upflows and downflows should be detectable even when no coronal rain is visible

(see Gabriel Pelouze's talk)

Thanks for your attention!