# Investigating the response of loop plasma to nanoflare heating using RADYN simulations

Vanessa Polito

Harvard-Smithsonian Center for Astrophysics

P. Testa (CfA), J. Allred (NASA/GSFC), M. Carlsson (UiO), B. De Pontieu (LMSAL), T. Pereira (UiO)

8<sup>th</sup> coronal loops workshop June 28, 2017-Palermo, IT

### Outline

#### Introduction: IRIS diagnostics of coronal heating

#### Simulations of nanoflare loops

- Motivation
- The RADYN code and the grid of models

#### Results of sample nanoflare simulations:

- Atmospheric response
- Forward modelling of IRIS observables

#### Summary & Conclusions

# IRIS diagnostics of coronal heating

- Tracing the signature of heating release in the corona is challenging
- IRIS observations show small short-lived brightenings at the TR footpoint of hot loops -signatures of coronal heating?
- Observations of TR spectral lines combined with hydrodynamic modelling can provide important *constraints on the heating proprieties* (Testa et al. 2014)



#### (Testa et al. 2014, Science)

# IRIS diagnostics of coronal heating

# Statistical study of small heating events shows (Testa, in prep):

- Rapidly variable TR brightenings (<30s)
- Large range of shifts for the IRIS TR Si IV line (from blue to red or no-shift)
- A variety of coronal loop parameters observed by AIA
- Different profiles for the IRIS chromospheric Mg II lines (mostly single-peaked)

# *Need grid of models to interpret the variety of observations*

- Exploration of parameter space
- More realistic modelling of chromospheric emission



2015/11/12 01:19:59.650

### Simulations of nanoflare loops with the RADYN code

**RADYN** (Carlsson & Stein, 1997, Allred et al, 2006) solves the equation of radiation hydrodynamics on a 1D adaptive grid

- Non-LTE radiative transfer for H, He, Ca II
- Allows to model heating by:
- In-situ heating and thermal conduction
- **Beams of accelerated particles with power law distribution** characterized by total energy ( $E_T$ ), low energy cut-off ( $E_C$ ) and spectral index ( $\delta$ )
- > Alfven waves (Kerr et al, 2016)
- Includes Fokker-Planck equations to treat accelerated particles (Allred et al. 2015)
- Allows to include the effects of the return current (Allred et al. 2015)

# Simulations of nanoflare loops with the RADYN code

Parameters space of our study:

#### Heating model

- Electron beam (EB) with parameters:  $E_T=6 \cdot 10^{24} \text{ ergs}, \delta=7, E_c=5, 10 \text{ and } 15 \text{ kev}$
- Thermal conduction (TC),  $E_T = 6 \cdot 10^{24}$  ergs
- Duration of the heating: 10 s

#### Initial atmosphere

• Quiet sun and plage (Carlsson et al, 2015, ApJ)

#### Loop half-length

• 15 Mm, 50 Mm and 100 Mm

#### Initial loop temperature

• 1 MK, 3 MK and 5 MK



Example of initial atmosphere in plage (Carlsson et al, 2015) for 15 Mm 1MK & 3MK loops

# Atmospheric response – 15 Mm 1MK loop, EB



# Atmospheric response – 15 Mm 1MK loop, EB



### IRIS Si IV spectra- 15 Mm 1MK loop



# IRIS Si IV spectra- 15 Mm 3MK loop



# IRIS Mg II k-15 Mm 3MK loop



- Modeling of Mg II lines with RH 1.5D (Pereira et al, 2015) in partial redistribution (PRD)
- Large variety of line profiles depending on the heating model and initial conditions
- Initial atmosphere is crucial in order to reproduce realistic initial "plage" Mg II profiles work in progress

# Summary (1/2)

We have run a grid of nanoflare-heated loop models, exploring the effect of different parameters. Preliminary results:

#### TR observables

- Our models seem to reproduce the short duration of observed TR brightenings
- A large range of Si IV blueshifts can be reproduced depending on electron parameters, initial atmospheric condition and heating model
- Blueshifts cannot be reproduced by thermal conduction only in the cases we analyzed
- EB model with  $E_c = 5$  kev yields similar results than the conduction model
- The initial temperature and density of the loops are crucial parameters, in particular, if the loop is too hot and dense, the simulations show low line intensities and small shifts
- Simulations in loops of different lenghts but same temperature yield some similar results overall (i.e., trend of red/blue shifts vs E<sub>c</sub>)

# Summary (2/2)

#### Chromospheric observables

- Mg II line profiles sensitive to the details of the heating
- Work in progress: more realistic initial profiles

#### **Coronal observables**

- Electron distributions with high  $E_c$  values produce very low AIA 94 A counts, low  $E_c/TC$  models are more effective in heating the corona
- Need longer timescales to be modeled than TR emission, should take into account multi thread models and frequency of nanoflares events (e.g., Reep at al, 2013, Cargill et al 2014)