Probing Fine Time Scale Variations in the Quiet Sun Brightness Temperature at Metrewaves

Rohit Sharma¹ Collaborator: Divya Oberoi¹

¹National Centre for Radio Astrophysics Tata Institute of Fundamental Research, Pune, India

8th Coronal Loop Workshop: Many Facets of Magnetically Closed Corona, Palermo, Italy June 30, 2017

Image: Image:

Sac

Nature of Radio Emission

+ Quiet Sun emission

- Thermal free-free emission background.
- Brightness Temperature, $T_B = T_e(1 e^{-\tau})$, Optical depth $\tau = \int \kappa ds$. s is the line of sight distance.

$$\kappa = \frac{10^{-11} N_e^2}{n f^2 T_e^{3/2}}$$

109 κ : Absorption coefficient 108 skurta et al., 1999 E N_e: Electron density (ohl et al., 1998 107 T_e : Electron temperature Maximum anisotropy Jensity Minimum anisotropy n: Refractive index 10⁶ f: Frequency of the observation 10⁵ Electron Optical depth of solar corona at 104 low radio frequencies ($\tau \leq 1$). 103 Plasma frequency $(\nu_p \propto \sqrt{N_e})$ Heliocentric Distance

Sac

Sac

Advantages of Solar Radio Observations

- Active emission is produced from plasma emission processes, which are coherent.
- Direct detection of non-thermal emission.
- Larger contrast in spectrum/images.
- Ideal to study weak heating emission/events.
- Coronal Heating/Nanoflare hypothesis.

Technological challenges

- Radio Sun is more dynamic (variability < 1 sec, < 1 MHz), morphologically complex.
- Synthesis imaging averages over time and frequency. Snapshot imaging with high frequency and time resolution.
- New generation interferometers like Murchison Widefield Array (MWA), Square Kilometre Array (SKA)1-Low are closer to ideal solar instrument.

Weaker Emission Features - Disc Integrated Spectrum (Oberoi, D., Sharma, R. & Rogers, A.E.E. Sol Phys (2017) 292: 75) 1 Solar Flux Unit (SFU) = 10⁻¹⁹ ergs cm⁻² sec⁻¹ Hz⁻¹ = 10⁴ Jansky

8th Coronal Loop Workshop, Palermo, Italy - 2017

Sharma, R.

	Weak readered	
Impulsive	e Features	NCRA • TIFR
242.3- 240.26-		1.00
219.26- 217.22-		
198.78-		
180.86- <u>♀</u> 178.82-		0.30
ž 162.94-		0.00

Results - Disk Integrated Spectrum

- Earlier studies with MWA reports impulsive fluxes of 10 100 SFU for weaker features. Typical Type-III bursts ~ 10 - 1000 SFU. (Suresh A., Sharma R., Oberoi D., & MWA collaboration 2017, ApJ)
- Typical range of brightness temperature 10⁹ 10¹² K (Saint-Hillaire et al. 2013).

$$1 \text{ SFU} = 10^{-19} \text{ ergs cm}^{-2} \text{ sec}^{-1} \text{ Hz}^{-1}$$

Frequency (MHz)	Continuum Flux (SFU)	Impulsive Flux (SFU)	Impulsive Fraction	Т _в (К)	Impulsive Energy (ergs)
109.0	2.74 ± 0.34	5.43 ± 0.07	0.25 ± 0.01	3.7e+07	$4.6 imes10^{15}$
121.0	3.68 ± 1.31	4.62 ± 0.13	0.24 ± 0.00	3.2e+07	$3.9 imes10^{15}$
134.0	4.84 ± 1.46	3.33 ± 0.13	0.26 ± 0.02	2.3e+07	$2.8 imes 10^{15}$
147.0	6.24 ± 0.74	5.77 ± 0.13	0.42 ± 0.07	3.9e+07	$4.9 imes10^{15}$
162.0	8.14 ± 1.07	5.79 ± 0.03	0.17 ± 0.00	4.0e+07	$4.9 imes10^{15}$
180.0	10.65 ± 1.62	10.44 ± 0.71	0.31 ± 0.03	7.3e+07	$8.8 imes10^{15}$
198.0	13.54 ± 2.34	13.35 ± 0.89	0.33 ± 0.02	9.2e+07	$1.1 imes10^{16}$
218.0	17.75 ± 3.02	12.96 ± 0.43	0.45 ± 0.05	8.9e+07	$1.1 imes10^{16}$
241.0	23.35 ± 3.38	16.24 ± 0.60	0.28 ± 0.04	1.1e+08	$1.4 imes10^{16}$

8th Coronal Loop Workshop, Palermo, Italy - 2017

Sar

Advantages of Imaging

- Each pixel can make an image.
- Flux obtained from spectrum is distributed on the image.
- Weaker variability can be detected.

 \square

< - 17 ►

Data Description

- Quiet period.
- 9 frequency band between 110 and 240 MHz.
- Time: 03:39:36 03:44:32 UT

Weak Features

Imaging

Solar Flux Spectrum

3

<<p>< □ > < □ > < □ > < Ξ >

SQC.

Ξ

Sharma, R

Weak Features

Imaging

Imaging - Results

161 MHz

Typical coronal heights are:

- 239 MHz corresponds to 1.021 R_☉ or 14 Mm from photosphere.
- 161 MHz corresponds to 1.2 R_☉ or 147 Mm from photosphere.
- 109 MHz corresponds to 1.4 R_{\odot} or 280 Mm from photosphere.

(ロ) (四) (三) (三)

Weak Features

Imaging

Imaging - Slowly Varying Component

Slowly varying component and fluctuations.
1-2 % variation in brightness temperature / flux.
Mean T_B is 0.183, 0.234 & 0.281 MK at 109, 161 & 239 MHz respectively.

Imaging - Result

Frequency (MHz)	Mean T _B (MK)	$\frac{1}{variation}(K)$	Fractional RMS	Noise $\sim \sqrt{2\delta\nu\delta t}$
109	0.183	1219	0.67 %	0.06%
161	0.234	709	0.30 %	0.06%
239	0.281	1056	0.38 %	0.06%

Isotropic impulsive energy $\sim 10^{13}$ ergs.

- Type-III bursts 10¹⁸ 10²³ ergs (Saint-Hilaire et al. 2013)
- Type-I bursts 10²¹ ergs (Mercier & Trottet 1997)

Summary

Non-Imaging Studies

- We have detected weak impulsive features. Flux scales $\lesssim 10$ SFU. $T_B > 10^7 10^8$ K. Isotropic impulsive power $\sim 10^{15}$ ergs.
- Flux emitted in impulsive features is significant in energy and fraction.
- No particular trend with frequencies / coronal heights.

Imaging Studies

- Going two order of magnitude deeper in the energies. Flux scales $\lesssim 1$ SFU. Isotropic power $\sim 10^{13}$ ergs.
- Minute timescale slowly varying component ($\sim 1 2\%$) on mean T_B 0.18-0.28 MK.
- RMS variation in Brightness temperature < 1% detected, i.e $\Delta T_B \lesssim 10^3$ K.

Implications of variabilities

- Electron density fluctuations / weak heating.
- Missing piece of heat generation/transportation.

Image: Image:

Sac

Ja Co

Ξ

Thank you.

8th Coronal Loop Workshop, Palermo, Italy - 2017

<<p>(日)

Sharma, R.

Interpretation

Brightness temperature, $T_B = T_e(1 - e^{-\tau})$ Optical Depth, $\tau = \int \kappa ds$. $\Delta T_B \propto e^{-\tau} \Delta \tau$ $\Delta \tau \propto 2N\Delta N$

Line of sight variation (s): Scattering or Refraction.

Variations in electron density.

Occurrence Rate (β)

 $\delta\beta$

0.02

0.03

0.05

0.03

0.05

0.05

0.03

0.02

0.13

5900

Hudson et al. 1991 calculates rate to be < -2.0.

Plasma Emission Process

Ratcliffe, H. 2013

8th Coronal Loop Workshop, Palermo, Italy - 2017

SQC.

Ξ

< □ > < □ > < □ > < □ > < □ > < □ >

Plasma Beta

Gary, G.A. Solar Physics (2001) 203: 71

3 5900

<ロト <回ト < 回ト

Weak Features

Imaging

Summary

Typical Non-Thermal Power

(1)

Assuming isotropic emission, total average impulsive power radiated,

 $W = 4\pi D^2 \Delta \nu \Delta t S_{\odot}$

Sharma, R.