From monolithic or multi-stranded loops to turbulent loops using 3D simulations of wave heating

Tom Van Doorsselaere

Centre for mathematical Plasma Astrophysics, Mathematics Department, KU Leuven

tom.vandoorsselaere@kuleuven.be

28 June 2017

Co-authors: Norbert Magyar (KU Leuven), Marcel Goossens (KU Leuven)

Discussion

Driven transverse waves

Tomczyk & McIntosh (2009): CoMP propagating waves

Anfinogentov et al. (2015): AIA standing (decayless) waves

Are decayless waves propagating or standing? In any case, driven from below?

Discussion

Non-linear transverse waves

Terradas et al. (2008): large amplitude standing kink waves experience Kelvin-Helmholtz instability

Antolin et al. (2014): perform modelling of impulsively excited waves (cross-sections)

Kelvin-Helmholtz instability forms so-called Transverse Wave Induced Kelvin-Helmholtz rolls (or TWIKH rolls)

Tom Van Doorsselaere

28 June 2017 3 / 12

Discussion

Multi-stranded loop models

- Hypothesis: coronal loops consist of (magnetically decoupled) strands
- Strands heated with nanoflares
- Few to a thousand strands
- Dynamic equilibrium or cooling

Discussion

Simulation setup

Magyar & Van Doorsselaere (2016): simulate honeycomb structure

- Macro-loop with radius R = .5 Mm and length L = 50 Mm.
- Strands with radius $R_s = .1R$, touching each other.
- Drive with vertical velocity field (5km/s).

Strands fracture and get mixed. If loops are oscillating transversally, multistranded loops mix.

Tom Van Doorsselaere

28 June 2017 5 / 12

Discussion

Driven transverse waves

Induction equation:

$$\frac{\partial \vec{B'}}{\partial t} = \vec{\nabla} \times (\vec{V'} \times \vec{B}),$$

or (for V'_{ϕ} and B'_{ϕ} and $\vec{B} = B\vec{1_z}$)
 $\frac{\partial B'_{\phi}}{\partial t} = \frac{\partial V'_{\phi}B}{\partial z}$

Standing waves in $z \in [0, L]$:

 $V_{\phi}^{\prime}\sim\cos\left(\phi
ight)\sin\left(\pi z/L
ight)\sin\left(\omega t
ight) \quad B_{\phi}^{\prime}\sim\cos\left(\phi
ight)\cos\left(\pi z/L
ight)\cos\left(\omega t
ight)$

No stabilising magnetic field for standing waves. For propagating waves:

 $V'_{\phi} \sim \cos(\phi) \sin(\pi z/L - \omega t)$ $B'_{\phi} \sim \cos(\phi) \sin(\pi z/L - \omega t)$ Stabilising magnetic field. Kelvin-Helmholtz instability does not work for propagating waves (e.g. Browning & Priest 1984).

Discussion

Uniturbulence

Turbulence? How? Only upward propagating waves!

Magyar et al. (2017, submitted): B = 5G, $\rho = 2 \ 10^{-13}$ kg/m³, 250 Gaussian density enhancements, drive with "random motion" with RMS velocity of 12km/s.

x-axis (Mm)

Discussion

Uniturbulence

Current sheets like turbulence, highly variable power laws

Feed energy on large scales

- ightarrow Cascade to small scales
 - Dissipate at small scales

Tom Van Doorsselaere

Discussion

Uniturbulence

Normally, turbulence described with Elsässer variables:

$$ec{z}^{\pm} = ec{v} \pm rac{ec{b}}{\sqrt{\mu
ho}}$$

Governing equations:

$$\frac{\partial \vec{z}^{\pm}}{\partial t} \mp \vec{v}_{A} \cdot \nabla \vec{z}^{\pm} = -\vec{z}^{\mp} \cdot \nabla \vec{z}^{\pm}$$

Only non-linear evolution if both \vec{z}^+ and \vec{z}^- are present.

Discussion

Uniturbulence

In-situ generation of \vec{z}^+ , because of transverse structuring. Turbulence develops.

Discussion

Conclusions & Discussion

- $\bullet~\mbox{Transverse}$ waves $\rightarrow~\mbox{multi-stranded}$ loops mix
- Uniturbulence: z^- and inhomogeneity \rightarrow in-situ z^+

Tom Van Doorsselaere

Discussion

Conclusions & Discussion

Comparison with nanoflares

	Nanoflares	Uniturbulence
Shape of heating	$\delta(z)$	extended current sheets
Time of heating	short	substantial fraction of period
Location of heating	random	footpoints (resistivity) loop top (viscosity)
Dimensionality	1D is enough	3D needed
	independent strands	turbulent transverse mixing
Strands	Ø	Ø
Broad DEMs	1	\checkmark
Low filling factors	Ø	Ø