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Introduction TWIKH rolls & Uniturbulence

Driven transverse waves

Tomczyk & Mclntosh (2009): CoMP propagating waves
Anfinogentov et al. (2015): AIA standing (decayless) waves

The parameters of oscillating loops
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Are decayless waves propagating or standing?
In any case, driven from below?
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Introduction TWIKH rolls & Uniturbulence

Non-linear transverse waves

Terradas et al. (2008): large amplitude standing kink waves
experience Kelvin-Helmholtz instability

Antolin et al. (2014): perform modelling of impulsively excited
waves (cross-sections)

Kelvin-Helmholtz instability forms so-called
Transverse Wave Induced Kelvin-Helmholtz rolls (or TWIKH rolls)
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Introduction
°

Multi-stranded loop models

@ Hypothesis: coronal loops consist of (magnetically decoupled)
strands

@ Strands heated with nanoflares

@ Few to a thousand strands

@ Dynamic equilibrium or cooling

’!‘) !"

M "' anp)
1 h'&' n\ 5
WO \% 18

0 5.0%10° 1.0x10* 1.5x10*
time (s)
anoflar

individual
diffuse component
(weak, high-frequency nanoflares)

| =]
resolution

element
>
whole loop

‘recharge’

< direction
of view
(Klimchuk 2015, Peter et al. 2013)

Tom Van Doorsselaere Turbulent loops 28 June 2017 4/12



rolls & Uniturbulence

Simulation setup

Magyar & Van Doorsselaere (2016): simulate honeycomb structure
@ Macro-loop with radius R = .5Mm and length L = 50Mm.
@ Strands with radius Rs = .1R, touching each other.
@ Drive with vertical velocity field (5km/s).

DB: looy 5mhd,hdf5,w,cn¢,umo

Strands fracture and get mixed.
If loops are oscillating transversally, multistranded loops mix.
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Introduction TWIKH rolls & Uniturbulence Discussion
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Driven transverse waves

Induction equation:

- -
GaBt =V x (V' x B),

or (for V} and B} and B = BI)
/! !
0B, dVB

ot 0z

Standing waves in z € [0, L]:
Vi, ~ cos (¢)sin (rz/L)sin (wt) Bj ~ cos(¢)cos (mwz/L)cos (wt)
No stabilising magnetic field for standing waves.
For propagating waves:

Vi, ~ cos (¢)sin (rz/L — wt) B}, ~ cos(¢)sin(mz/L — wt)
Stabilising magnetic field. Kelvin-Helmholtz instability does not
work for propagating waves (e.g. Browning & Priest 1984).

Tom Van Doorsselaere Turbulent loops 28 June 2017 6 /12




Introduction TWIKH rolls & Uniturbulence
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Uniturbulence
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Turbulence? How? Only upward propagating waves!

Magyar et al. (2017, submitted): B = 5G, p = 2 10~ 13kg/m3, 250
Gaussian density enhancements, drive with “random motion” with
RMS velocity of 12km/s.
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Introduction TWIKH rolls & Uniturbulence Discussion
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Uniturbulence

Magyar et al. (2017, submitted)
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Current sheets like turbulence, highly variable power laws

Feed energy on large scales
— Cascade to small scales

— Dissipate at small scales
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Introduction TWIKH rolls & Uniturbulence
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Uniturbulence

Normally, turbulence described with Elsasser variables:

ZF=v+

g
o)

Governing equations:

ozt _.
%:FVA‘V?:—Zi-Vfi

Only non-linear evolution if both Z™ and Z~ are present.
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Introduction TWIKH olls & Uniturbuler

Uniturbulence
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In-situ generation of Z*, because of transverse structuring.

Turbulence develops.
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Introduction TWIKH rolls & Uniturbulence Discussion
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Conclusions & Discussion

@ Transverse waves — multi-stranded loops mix

@ Uniturbulence: z= and inhomogeneity — in-situ z*
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Introduction olls & Uniturbulence Discussion
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Conclusions & Discussion

Comparison with nanoflares

Nanoflares Uniturbulence
Shape of heating | 6(z) extended current sheets
(+reconnection?)
Time of heating | short substantial fraction of period
Location of heating | random footpoints (resistivity)

loop top (viscosity)

Dimensionality | 1D is enough 3D needed
independent strands turbulent transverse mixing
Strands | |
Broad DEMs | i u
Low filling factors | 7] 4|
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