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Observatories and Instruments

• Several instruments available in Chandra 
and XMM-Newton

SPACE OBSERVATORY

INSTRUMENT Chandra XMM-Newton

CLASS TYPE HRC
ACIS-I
ACIS-S

LETG
HETG

EPIC
MOS (x2)

EPIC pn RGS (x2)

Imaging    

Spectrometers

Non-
dispersive

  

Dispersive  

• Dispersive spectrometers (gratings) employ 
one of the imaging devices as detector

• All detectors provide timing information
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What stellar X-ray spectra tell us
• Optically-thin emission  all photons escape directly

• Collision-dominated hot plasma (no photoionisation)   

 X-ray luminosity  square density  volume            

Lx  NeNH  V

• Free electrons interacting with partially and fully 
ionized atoms

 free-free emission (bremsstrahlung)

 free-bound recombination

electron impact excitation                                           
and bound-bound transitions

• The actual spectrum depends on the plasma 
temperature and element abundances

Lines

Continua
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Stellar X-ray Spectra

T = 2 MK
Sun-like corona

T = 20 MK
Active star (YSO)

H-like:     N    O         Ne     Mg    Si     S       Ar        Fe

He-like: N   O          Ne     Mg    Si     S       Ar       Fe

- Fe n=2 -
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Medium- and high-resolution 
spectroscopy with XMM-Newton

Instruments: 

3 CCD detectors 
(EPIC)

2 reflection 
grating 
spectrometers 
(RGS)

AB Dor, young, 
active K1 V 
star. 
Calibration 
target
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• X-ray data are Poissonian

• Observed source counts are distributed in detector 

spatial coordinates, s, and energy channels, PH

• For a point source with a flux depending on  

energy, E, and time, t

∫dt ds 

C(PH)   =  ∫dt   ∫ds ∫dE     T(s, PH, E)         S(E, t)

Basics of CCD X-ray spectra

Source 

Flux

Convolved 

with

Observed 

photon         = 

distribution

Integrated 

in detector space

Instrument 

Transfer

Function

Integrated 

in time
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Forward-modeling approach

• The aim of the spectral analysis is to 
derive properties of the X-ray emitting 
plasma from the science data

• If the Transfer function is not diagonal 
(as usually happens) the above equation 
cannot be inverted

• Alternative: assume a physical model, 
convolve it with the instrument response, 
and compare the predicted spectrum 
with the observation, using an 
appropriate statistical indicator of 
goodness-of-fit quality
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Instrument Response

• The instrument transfer function,          
T(s, PH, E), describes

– How many photons are collected by 
optics+detector (Effective Area)

– The spatial distribution of the events in 
detector coordinates, s (Point Spread 
Function)

– The probability that a photon of energy 
E triggers an event in energy channel PH
(spectral Response Matrix)
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Effective Area: energy dependence
• Three contributions: mirror, filter, CCD
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Effective Area: energy dependence
• For the XMM-Newton EPIC-pn, mirror  filter(s)  QE(CCD) =

Then, we need to correct also for CCD gaps, bad pixels and offset columns
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Effective Area: spatial dependence
• Vignetting effect of the optics: the Effective Area 

decreases for increasing off-axis angle.

• Note that EPIC/MOS also has an azimutal variation due 
to the gratings on the light path
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Encircled Energy Fraction
• Fraction of source counts collected in a finite source 

region (circle), as determined by integration of the PSF

• In general, this correction depends on energy and off-
axis angle
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Spectral Response Matrix
• Statistical description of 

the distribution of events 
in different instrument 
energy channels, PH, 
corresponding to source 
photons with any fixed 
energy value, E

• It depends on the frame 
rate and on the position of 
the source in the FoV
(distance from the read-
out node) because of the 
Charge Transfer Efficiency

Channel
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o
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Spectral Resolution

• In CCD detectors, it is slightly dependent on energy     
(for EPIC-pn, less than a factor ∼3 between 0.3-10 keV), 
but it depends also on the event type (pattern) and  
source position due to Charge Transfer Efficiency

FWHM

events at Y0
single events at Y9
double events at Y9

Channel [5 eV]
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Data products for spectral analysis

• Effective area: transfer function of optics+detector as a 
function of energy (includes correction for the 
Encircled Energy Fraction, bad pixels, etc.)

• Redistribution matrix: probability that a photon of a 
given energy is registered in a given channel

• Source spectrum: number of photons collected in a 
suitable source region, binned in energy

• Background spectrum: number of photons collected in 
a suitable background region, binned in energy

• Exposure time: effective integration time related to the 
actual source and background regions in the FoV
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Background subtraction

• Counts collected in the source region, S(PH), include 
also background (bkg) emission

• A separate bkg spectrum, B(PH), is required

• Two approaches are possible:

a) subtract the background spectrum from the source+bkg
spectrum, to get a “net” bkg-subtracted spectrum on which 
spectral analysis will be performed                                  

C(PH) = S(PH)/TSRC - ASRC/ABKG•B(PH)/TBKG

where TSRC and TBKG are the source and bkg exposure times, 

ASRC and ABKG are the source bkg region areas

b) perform a simultaneous spectral analysis of S(PH) and B(PH) 
with independent models describing the source and the bkg
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Extracting spectra from event files

• Choose a source region 
(usually a circle) avoiding 
nearby sources

• Extract the list of events 
in that region with their 
energy information: they 
are source+background
events

• Extract background 
counts in a nearby region

• Create appropriate 
instrument response file

• Fit your spectrum 
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Basics of spectral fitting

Load spectra 

and 

instrument 

response 

files

Compute 

statistical 

confidence 

regions on 

model 

parameters

Fit the model 

(parametric 

hypothesis 

testing)

Choose 

statistics and 

decide 

confidence 

threshold

Define a 

model Good fit?

NO      
Try again

YES      
Go onOptionally, try 

an alternative 

model

Compare fit 

quality of 

competing 

models
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Statistical hypothesis testing
• Goodness-of-fit test: How well does the model describe my data ?

• Two tests are commonly used 

Χ2 = Σ [ C(PHi) - M(PHi) ]
2 / σi

2(PHi)
– Simple and well-known distribution: if the fit is good,                           

Χ2/DoF ≈1, where DoF is the number of Degrees of Freedom (= number

of data points – number of free parameters)

– Requires that distribution of C(PHi) in each spectral channel is Gaussian           
⇒ Data rebinning required ⇒ possible loss of spectral resolution

– Requires that the estimate of the variance, σi
2(PHi) is uncorrelated with C(PHi)    

⇒ not true for Poisson variates ⇒ Possible remedy: bins with equal S/N ratio

• C-statistics (Cash 1979):

C=2Σ[m(PHi) - S(PHi)×log(m(PHi)) + log(S(PHi)!)] 
where S(PHi) are source+bkg counts and m(PHi) is the corresponding model

– It can be used with low-count spectra without rebinning

– It cannot be applied to background-subtracted spectra

– It does not provide us with an absolute estimate of the quality of the fit



A. Maggio – Spectral and Timing Analysis – Palermo 20/5/2009

Spectral binning vs. resolution

• In general, instrument energy channels oversample the 
spectral resolution

– Example: for EPIC-pn the spectral resolution at 1 keV is 
FWHM≃70 eV , while energy channels are 5 eV wide over the 
whole instrument bandpass

⇒ measurements in adjacent channels are correlated

• A sampling with a bin size ∼FWHM/3 is sufficient to 
reconstruct the spectral characteristics of the source 
(see Nyquist-Shannon information theory)

⇒ You can safely rebin your spectrum up to FWHM/3

• To employ Χ2 statistics, a S/N  5 per bin is usually 
recommended, and data points should be independent

– the higher the number of counts per bin, the less important 
are bias effects in parameter estimation

⇒ Rebinning is a must!
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Accepting/rejecting a best-fit model
• Any quantity used for the statistical analysis is itself of statistical 

nature, hence it has an error

– Example: E( χ² ) = √(2DoF) = √(2(n – ν))                                                 
(r.m.s. in the asymptotic limit n  ∞)

– A correct model yields χ²  n – ν with a r.m.s. E( χ² )

– At any best-fit χ² value corresponds a probability, P, that the 
model is acceptable (confidence level)

– Due to systematic errors in the data calibration or in the 
model, you might not get very large values of P

• To reject a wrong model we ask that
χ² > n – ν +   √(2(n – ν))                                             

where  is related to the confidence level we choose

– If the model is wrong                                                              
χ²  n – ν + N where N is  total number of events

⇒ in order to reject a wrong model N >   √(2(n – ν)) is required
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Statistical uncertainties
• Method: search for the values of the parameter which yield an 

increase of the Χ2 , corresponding to a certain confidence level, 
with respect to the best-fit model (Lampton et al. 1976)
– Example: the 90% confidence level of one interesting parameter corresponds 

to Δ Χ2 = 2.71, hence search  for which values of the parameter p
Χ2 = Χ2 

min + 2.71

Confidence Interesting parameters

Level 1 2 3

68% 1.00 2.30 3.50

90% 2.71 4.61 6.25

99% 6.63 9.21 11.30

Parameter

Δ
Χ

2
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Statistical uncertainties

• In general  Χ2 (and hence Δ Χ2) is not a smooth 
function of the parameter p with a single minimum

– Local minima of Χ2 in the domain of the model
parameter are possibly present

⇒ Repeat your fit with different initial values of p

⇒ plot Δ Χ2 as a function of the parameter

– the interesting parameter is often not independent 
from other parameters

⇒ plot two-dimensional Δ Χ2 contour maps
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Discovery of stellar coronal emission
beside the solar one (Catura, Acton, Johnson 1975, ApJ 196, L47)

•Capella (α Aurigae) detected for 1.2 sec      
(22 photons) with a X-ray detector       
(0.2-1.6 keV band) during a rocket flight

1974 April 5
Capella in FOV for aspect 
calibration pointing
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The first X-ray spectrum of a stellar 

corona and its interpretation
• Detected signal not due to 

photospheric UV radiation

• Thermal bremsstrahlung model 
yields T = 8+7

-3 x 106 K

• No indication of interstellar 
absorption  nearby source 

• Lx  1031 erg s-1

• Point-like source

• Not detected in previous 

observations  variable or 
transient source

New class of Galactic soft (E < 2 keV) X-ray sources!

Sirius

Capella
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Discovery of intense line emission
(Cash et al. 1978, ApJ 223, L21) 

• Capella observed with  
HEAO-1 gas scintillation 
proportional counter

• Emission excess between 
0.65-1 keV with respect to 
thermal bremsstrahlung 
model spectrum

 Evidence of thermal 
emission from optically-
thin  plasma in collisional 
equilibrium at T 107 K

Capella is 5 times hotter and 103 times more intense 

than the solar corona.
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Discovery of intense line emission

• Einstein Observatory  (HEAO-2)          
Solid State Spectrometer (SSS) 
(E 160 eV, E/E6 at 1 keV) 

 Evidence of 
unresolved emission 
line complexes from 
Fe, Mg, Si, and S   
(Swank et al. 1981, ApJ 246, 208)

• Einstein Observatory
Objective Grating Spectrometer
(1 Å, 5-30 Å, E/E12 at 1 keV) 

 Line identifications

 Thermal model with two
discrete components         
(Mewe et al. 1982, ApJ 260, 233) 
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First measurements of line intensities
(Vedder & Canizares 1983, ApJ)

• Einstein Focal Crystal Spectrometer (R = E/E  30)

• First attempts of emission measure analysis                 

 line intensities consistent with isothermal 
plasma at  T  6 106 K or with emission measure 
distribution with peak at T  3 106 K
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Detailed multi-temperature analysis 
(Lemen et al. 1989) 

• Capella observed with  
EXOSAT Transmission 
Grating Spectrometer    
( 3Å, 10-200 Å range, 
R = 360)

• Results consistent with 
those of 2-T models

 Coronae apparently dominated by plasma in two
relatively narrow temperature intervals

 Interpretation in terms of two classes of coronal
magnetic structures
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First abundance measurements

• Line complexes due to O, N, Ne, Mg, Si, S, and Fe

• 1-, 2-, 3-component thermal models adopted + 
individual element abundances as free parameters

•  Anomalous (non-solar) abundances found for 
most magnetically (i.e. X-ray luminous) active 
stars

• ASCA Solid-state
Imaging Spectrometer
(CCD-based detector 
E/E  15 at 1 keV, 
E/E  50 at 6 keV)

(Brickhouse et al. 2000)
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High-resolution X-ray spectroscopy
• Capella observed with  

Chandra Low-Energy 
Transmission Grating      

( 0.0125 Å, 5-170 Å)

• Several tens of emission 
lines identified and 

measured  plasma 
emission measure vs. 
temperature

•  element abundances       
 plasma densities             
 plasma dynamics 

(Argiroffi et al. 2003) 
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Variability analysis
• Time series obtained from X-ray 

observations have some peculiarities

₋ Low-count statistics (data are Poissonian)

₋ Time series are non-uniform:

 periodic discontinuities due to spacecraft orbit

 observation gaps between Good Time Intervals  

• Variability analysis must cope with
these peculiarities

• Stellar X-ray variability is non-periodic
on typical observation lengths
(10-100 ksec)  
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Stellar X-ray source variability
• Stellar coronal sources are known to 

vary on several time scales

₋ Short-term (from minutes to a few days) 
variability due to flares

₋ Medium-term variability (from a few hours 
to tens of days): rotational  modulation

₋ Long-term variability (years) due to 
magnetic cycles

• X-ray emission from YSOs may vary, at 
least in principle, also due to

• Variable accretion rate

• Absorption by the circumstellar disk
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X-ray variability of the solar corona
• Solar X-ray emission

observed with
Yohkoh/SXT                
(0.7 – 2.5 keV band)

• Variability observed at 
several time scales:

 flares ( < 1 day)

 rotational modulation
(  28 days)

magnetic cycle
(11 years)

(Micela & Marino 2003) 
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Sanz-Forcada, Maggio, Micela 2003

Stellar X-ray Variability

Prot ~ 0.5 days

Do active stars exibit magnetic

cycles, rotational modulation, 

and flares like the Sun ?
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Variability analysis: methods
(just a few examples among many)

• Non-periodic, non-flaring variability on time 
scales of typical X-ray observations

₋ Kolmogorov-Smirnov test (statistical textbooks)

₋ Χ2 methods (e.g. Collura et al. 1987)

• Periodic variability on medium-long time
scales

• Lomb-Scargle periodograms: frequency analysis of 
unequally spaced data (Lomb 1976; Scargle 1982)

• Flare identification

₋ Maximum-Likelyhood Bayesian Blocks
(Scargle 1998)
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Periodogram of Solar X-ray emission

Yohkok SXT
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Byesian Block analysis

Characteristic

Level

Flare

time [h]
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Maximum Likelihood Blocks (MLBs)

time [h]



A. Maggio – Spectral and Timing Analysis – Palermo 20/5/2009

X-ray light curves and Hardness Ratios

• Flares from compact coronal 

structures are characterized by 

a steep rise in X-ray flux and in 

temperature

• In order to test the latter, time-

resolved spectroscopy could 

be employed (if you have 

enough photons) or plots of 

hardness ratios

• The rise in temperature is 

expected and usually 

observed to precede the rise in 

emission measure (i.e. X-ray 

flux)
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The End
(Enjoy your analysis session)



A. Maggio – Spectral and Timing Analysis – Palermo 20/5/2009

Data Analysis Sessions
• 8 data sets (3 from Chandra, 5 from XMM-Newton)

• 16 exercises

• 19 workstations available (3 reserved)

• 32 students (2 per exercise and per workstation)

• 10 tutors
─ Costanza Argiroffi

─ Paola Ballerini

─ Fabrizio Bocchino

─ Marilena Caramazza

─ Francesco Damiani

─ Ettore Flaccomio

─ Elena Franciosini

─ Mario Guarcello

─ Antonio Maggio

─ Beate Stelzer
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Data Analysis Sessions
• Relevant subdirectories

─ bin (environment set-up)

─ Documents (tutorials, manuals)

─ DATA/<ExerciseName>

─ Different data sets linked in each directory

─ Results

• Linux operating system

─ bash (default) or csh available

• Software

• Data analysis: CIAO for Chandra, SAS for XMM-Newton, 

pwdetect for source detection

• Image handling: SAOimage (ds9)

• Database queries: SIMBAD (via Mozilla Web Browser)

• Spectral analysis: XSPEC

• Text editors, PS/PDF viewers, etc. (see README)
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Data Analysis Sessions

• First day Session

─ Data visualization, filtering/screening

─ Source Detection

─ Source identification

• Second day Session

─ Individual source and background extraction

─ Spectral analysis


