constellation School on

X-rays from Star Forming Regions

SPECTRAL AND VARIABILITY ANALYSIS OF X-RAY SOURCES

Antonio Maggio Istituto Nazionale di Astrofisica Osservatorio Astronomico di Palermo

Observatories and Instruments

 Several instruments available in Chandra and XMM-Newton

		SPACE OBSERVATORY					
INSTRUMENT		Chandra			XMM-Newton		
CLASS	ТҮРЕ	HRC	ACIS-I ACIS-S	LETG HETG	EPIC MOS (x2)	EPIC pn	RGS (x2)
Imaging		 ✓ 	✓		 ✓ 	\checkmark	
Spectrometers	Non- dispersive		✓		✓	✓	,
	Dispersive			\checkmark			\checkmark

- Dispersive spectrometers (gratings) employ one of the imaging devices as detector
- All detectors provide timing information

What stellar X-ray spectra tell us

- Optically-thin emission \Rightarrow all photons escape directly
- Collision-dominated hot plasma (no photoionisation) $\Rightarrow X$ -ray luminosity \propto square density \times volume $L_x \qquad \propto N_e N_H \qquad \times V$
- Free electrons interacting with partially and fully ionized atoms
 - > free-free emission (bremsstrahlung)
 - > free-bound recombination
 - electron impact excitation and bound-bound transitions
- The actual spectrum depends on the plasma temperature and element abundances

A. Maggio - Spectral and Timing Analysis - Palermo 20/5/2009

Ines

Stellar X-ray Spectra

A. Maggio - Spectral and Timing Analysis - Palermo 20/5/2009

3

Medium – and high – resolution spectroscopy with <u>XMM – Newton</u>

Instruments: 3 CCD detectors (EPIC) 2 reflection grating spectrometers (RGS)

AB Dor, young, active K1 V star. Calibration target

constellation

Basics of CCD X-ray spectra

- X-ray data are <u>Poissonian</u>
- Observed source counts are distributed in detector spatial coordinates, <u>s</u>, and energy channels, PH
 For a <u>point source</u> with a flux depending on
- energy, E, and time, t

Forward-modeling approach

- The aim of the spectral analysis is to derive properties of the X-ray emitting plasma from the science data
- If the Transfer function is not diagonal (as usually happens) the above equation cannot be inverted
- Alternative: assume a physical model, convolve it with the instrument response, and compare the predicted spectrum with the observation, using an appropriate statistical indicator of goodness-of-fit quality

Instrument Response

- The instrument transfer function, T(s, PH, E), describes
 - How many photons are collected by optics+detector (Effective Area)
 - The spatial distribution of the events in detector coordinates, <u>s</u> (Point Spread Function)
 - The probability that a photon of energy E triggers an event in energy channel PH (spectral Response Matrix)

Effective Area: energy dependence

• Three contributions: mirror, filter, CCD

Effective Area: energy dependence

• For the XMM–Newton EPIC–pn, mirror × filter(s) × QE(CCD) =

Then, we need to correct also for CCD gaps, bad pixels and offset columns

Effective Area: spatial dependence

 Vignetting effect of the optics: the Effective Area decreases for increasing off-axis angle.

Off-axis Angle (arcsec)

 Note that EPIC/MOS also has an azimutal variation due to the gratings on the light path

Encircled Energy Fraction

 Fraction of source counts collected in a finite source region (circle), as determined by integration of the PSF

axis angle

Spectral Response Matrix

- Statistical description of the distribution of events in different instrument energy channels, PH, corresponding to source photons with any fixed energy value, E
- It depends on the frame rate and on the position of the source in the FoV (distance from the read– out node) because of the Charge Transfer Efficiency

Constellation

Spectral Resolution

 In CCD detectors, it is slightly dependent on energy (for EPIC-pn, less than a factor ~3 between 0.3-10 keV), but it depends also on the event type (pattern) and source position due to Charge Transfer Efficiency

Data products for spectral analysis

- <u>Effective area</u>: transfer function of optics+detector as a function of energy (includes correction for the Encircled Energy Fraction, bad pixels, etc.)
- <u>Redistribution matrix</u>: probability that a photon of a given energy is registered in a given channel
- <u>Source spectrum</u>: number of photons collected in a suitable source region, binned in energy
- <u>Background spectrum</u>: number of photons collected in a suitable background region, binned in energy
- <u>Exposure time</u>: effective integration time related to the actual source and background regions in the FoV

Background subtraction

- Counts collected in the source region, S(PH), include also background (bkg) emission
- A separate bkg spectrum, **B(PH)**, is required
- Two approaches are possible:
 - a) subtract the background spectrum from the source+bkg spectrum, to get a "net" bkg-subtracted spectrum on which spectral analysis will be performed $C(PH) = S(PH)/T_{SRC} - A_{SRC}/A_{BKG} \cdot B(PH)/T_{BKG}$ where T_{SRC} and T_{BKG} are the source and bkg exposure times, A_{SRC} and A_{BKG} are the source bkg region areas
 - b) perform a simultaneous spectral analysis of S(PH) and B(PH) with independent models describing the source and the bkg

Extracting spectra from event files

- Choose a source region (usually a circle) avoiding nearby sources
- Extract the list of events in that region with their energy information: they are <u>source+background</u> <u>events</u>
- Extract <u>background</u> <u>counts</u> in a nearby region
- Create appropriate instrument response file
- Fit your spectrum

A. Maggio - Spectral and Timing Analysis - Palermo 20/5/2009

constellation

Statistical hypothesis testing

- **Goodness-of-fit test**: How well does the model describe my data?
- Two tests are commonly used

$X^{2} = \Sigma [C(PH_{i}) - M(PH_{i})]^{2} / \sigma_{i}^{2}(PH_{i})$

- Simple and well-known distribution: if the fit is good, $X^2/DOF \approx 1$, where DoF is the number of Degrees of Freedom (= number of data points - number of free parameters)
- Requires that distribution of $C(PH_i)$ in each spectral channel is Gaussian \Rightarrow Data rebinning required \Rightarrow possible loss of spectral resolution
- Requires that the estimate of the variance, $\sigma_i^2(PH_i)$ is uncorrelated with $C(PH_i)$ \Rightarrow not true for Poisson variates \Rightarrow Possible remedy: bins with equal S/N ratio

• C-statistics (Cash 1979): $C=2\Sigma[m(PH_i) - S(PH_i) \times log(m(PH_i)) + log(S(PH_i)!)]$

where S(PH_i) are source+bkg counts and m(PH_i) is the corresponding model

- It can be used with low-count spectra without rebinning
- It cannot be applied to background-subtracted spectra
- It does not provide us with an absolute estimate of the quality of the fit

Spectral binning vs. resolution

- In general, instrument energy channels oversample the spectral resolution
 - Example: for EPIC-pn the spectral resolution at 1 keV is FWHM~70 eV, while energy channels are 5 eV wide over the whole instrument bandpass
 - ⇒ measurements in adjacent channels are correlated
- A sampling with a bin size ~FWHM/3 is sufficient to reconstruct the spectral characteristics of the source (see Nyquist-Shannon information theory)

 \Rightarrow You can safely rebin your spectrum up to FWHM/3

- To employ X^2 statistics, a $S/N \ge 5$ per bin is usually recommended, and data points should be independent
 - the higher the number of counts per bin, the less important are bias effects in parameter estimation
 - ⇒ Rebinning is a must!

Accepting/rejecting a best-fit model

- Any quantity used for the statistical analysis is itself of statistical nature, hence it has an error
 - Example: E(χ^2) = $\sqrt{(2DoF)} = \sqrt{(2(n v))}$ (r.m.s. in the asymptotic limit $n \rightarrow \infty$)
 - A correct model yields $\chi^2 \approx n \nu$ with a r.m.s. E(χ^2)
 - At any best-fit χ^2 value corresponds a probability, P, that the model is acceptable (confidence level)
 - Due to systematic errors in the data calibration or in the model, you might not get very large values of P
- To reject a wrong model we ask that

 $\chi^2 > n - \nu + \sigma \times \sqrt{(2(n - \nu))}$

where $\boldsymbol{\sigma}$ is related to the confidence level we choose

If the model is wrong

 $\chi^2 \approx n - \nu + N$ where N is \approx total number of events

 \Rightarrow in order to reject a wrong model N > $\sigma \times \sqrt{(2(n - v))}$ is required

Statistical uncertainties

- Method: search for the values of the parameter which yield an increase of the X², corresponding to a certain confidence level, with respect to the best-fit model (Lampton et al. 1976)
 - Example: the 90% confidence level of one interesting parameter corresponds to $\Delta X^2 = 2.71$, hence search for which values of the parameter p $X^2 = X^2_{min} + 2.71$

Statistical uncertainties

- In general X^2 (and hence ΔX^2) is not a smooth function of the parameter p with a single minimum
 - Local minima of X² in the domain of the model parameter are possibly present
 - ⇒ Repeat your fit with different initial values of p
 - \Rightarrow plot ΔX^2 as a function of the parameter
 - the interesting parameter is often not independent from other parameters
 - \Rightarrow plot two-dimensional ΔX^2 contour maps

Discovery of stellar coronal emission

beside the solar one (Catura, Acton, Johnson 1975, ApJ 196, L47)

Capella (α Aurigae) detected for 1.2 sec
 (22 photons) with a X-ray detector
 (0.2-1.6 keV band) during a rocket flight

The first X-ray spectrum of a stellar corona and its interpretation

FIG. 2.—Energy spectra of pulses observed when the rocket was pointed at Sirius and Capella.

- Detected signal not due to photospheric UV radiation
- Thermal bremsstrahlung model yields T = $8^{+7}_{-3} \times 10^{6} \text{ K}$
- No indication of interstellar absorption \Rightarrow nearby source
- $L_x \sim 10^{31} \text{ erg s}^{-1}$
- Point–like source
- Not detected in previous observations ⇒ variable or transient source

<u>New class</u> of <u>Galactic</u> <u>soft</u> (E < 2 keV) <u>X-ray sources</u>!

Discovery of intense line emission (Cash et al. 1978, ApJ 223, L21)

FIG. 1.—Soft X-ray spectrum of Capella. The solid line represents the best-fit simple bremsstrahlung spectrum ($T = 5.6 \times 10^7$). Line emission is clearly visible at 0.85 keV.

- Capella observed with <u>HEAO-1</u> gas scintillation proportional counter
- Emission excess between
 0.65-1 keV with respect to thermal bremsstrahlung model spectrum

⇒ Evidence of thermal emission from opticallythin plasma in collisional equilibrium at T ≈10⁷ K

Capella is 5 times hotter and 10³ times more intense than the solar corona.

Constellation

Discovery of intense line emission

- <u>Einstein Observatory (HEAO-2)</u> Solid State Spectrometer (SSS) $(\Delta E \sim 160 \text{ eV}, E/\Delta E \sim 6 \text{ at } 1 \text{ keV})$
- ⇒ Evidence of unresolved emission line complexes from Fe, Mg, Si, and S (Swank et al. 1981, ApJ 246, 208)

- **<u>Einstein Observatory</u>** Objective Grating Spectrometer $(\Delta\lambda \sim 1 \text{ Å}, 5-30 \text{ Å}, E/\Delta E \sim 12 \text{ at } 1 \text{ keV})$
- \Rightarrow Line identifications
- ⇒ Thermal model with two discrete components (Mewe et al. 1982, ApJ 260, 233)

Constellation

First measurements of line intensities (Vedder & Canizares 1983, ApJ)

- *Einstein* Focal Crystal Spectrometer ($R = E/\Delta E \sim 30$)
- First attempts of emission measure analysis \Rightarrow line intensities consistent with isothermal plasma at T ~ 6 ×10⁶ K or with emission measure distribution with peak at T ~ 3 ×10⁶ K

Constellation

Detailed multi-temperature analysis

(Lemen et al. 1989)

• Capella observed with <u>EXOSAT</u> Transmission Grating Spectrometer $(\Delta\lambda \sim 3\text{\AA}, 10-200 \text{\AA} range,$ R = 3-60)

 Results consistent with those of 2–T models

⇒ Coronae apparently dominated by plasma in two relatively narrow temperature intervals

⇒ Interpretation in terms of two classes of coronal magnetic structures

First abundance measurements

ASCA Solid-state Imaging Spectrometer (CCD-based detector $E/\Delta E \sim 15$ at 1 keV, $E/\Delta E \sim 50$ at 6 keV)

- Line complexes due to O, N, Ne, Mg, Si, S, and Fe
- 1-, 2-, 3-component thermal models adopted + individual element abundances as free parameters
- → Anomalous (non-solar) abundances found for most magnetically (i.e. X-ray luminous) active

High-resolution X-ray spectroscopy

(Argiroffi et al. 2003)

- Capella observed with <u>Chandra</u> Low-Energy Transmission Grating (Δλ~ 0.0125 Å, 5-170 Å)
- Several tens of emission lines identified and measured ⇒ plasma emission measure vs. temperature
- → element abundances
 ⇒ plasma densities
 ⇒ plasma dynamics

Constellation

Variability analysis

- Time series obtained from X-ray observations have some peculiarities
 - Low-count statistics (data are Poissonian)
 - Time series are non-uniform:
 - periodic discontinuities due to spacecraft orbit
 observation gaps between Good Time Intervals
- Variability analysis must cope with these peculiarities
- Stellar X-ray variability is non-periodic on typical observation lengths (10-100 ksec)

Stellar X-ray source variability

- Stellar coronal sources are known to vary on several time scales
 - Short-term (from minutes to a few days) variability due to flares
 - Medium-term variability (from a few hours to tens of days): rotational modulation
 - Long-term variability (years) due to magnetic cycles
- X-ray emission from YSOs may vary, at least in principle, also due to
 - Variable accretion rate
 - Absorption by the circumstellar disk

X-ray variability of the solar corona

(Micela & Marino 2003)

- Solar X-ray emission observed with Yohkoh/SXT (0.7 - 2.5 keV band)
- Variability observed at several time scales:
 - \checkmark flares ($\tau < 1$ day)
 - ✓ rotational modulation ($\tau \sim 28$ days)
 - ✓ magnetic cycle (11 years)

Stellar X-ray Variability

Do active stars exibit magnetic cycles, rotational modulation, and flares like the Sun ?

0.6

50 [

0.8

1.0

1.2

1.4

AB Dor (pn, Jan 2001)

1.6

Variability analysis: methods (just a few examples among many)

- Non-periodic, non-flaring variability on time scales of typical X-ray observations
 - Kolmogorov-Smirnov test (statistical textbooks)
 - X² methods (e.g. Collura et al. 1987)
- Periodic variability on medium-long time scales
 - Lomb-Scargle periodograms: frequency analysis of unequally spaced data (Lomb 1976; Scargle 1982)
- Flare identification
 - Maximum-Likelyhood Bayesian Blocks (Scargle 1998)

Periodogram of Solar X-ray emission

Byesian Block analysis

A. Maggio - Spectral and Timing Analysis - Palermo 20/5/2009

TA

X-ray light curves and Hardness Ratios

- Flares from compact coronal structures are characterized by a steep rise in X-ray flux and in temperature
- In order to test the latter, timeresolved spectroscopy could be employed (if you have enough photons) or plots of hardness ratios
- The rise in temperature is expected and usually observed to precede the rise in emission measure (i.e. X-ray flux)

The End (Enjoy your analysis session)

Data Analysis Sessions

- 8 data sets (3 from Chandra, 5 from XMM-Newton)
- 16 exercises
- 19 workstations available (3 reserved)
- 32 students (2 per exercise and per workstation)
- 10 tutors
 - Costanza Argiroffi
 - Paola Ballerini
 - Fabrizio Bocchino
 - Marilena Caramazza
 - Francesco Damiani
 - Ettore Flaccomio
 - Elena Franciosini
 - Mario Guarcello
 - Antonio Maggio

Beate Stelzer

Data Analysis Sessions

- Relevant subdirectories
 - **bin** (environment set-up)
 - Documents (tutorials, manuals)
 - DATA/<ExerciseName>
 - Different data sets linked in each directory
 - Results
- Linux operating system
 - bash (default) or csh available
- Software
 - Data analysis: CIAO for Chandra, SAS for XMM-Newton, pwdetect for source detection
 - Image handling: SAOimage (ds9)
 - Database queries: SIMBAD (via Mozilla Web Browser)
 - Spectral analysis: XSPEC
 - Text editors, PS/PDF viewers, etc. (see README)

Data Analysis Sessions

- First day Session
 - Data visualization, filtering/screening
 - Source Detection
 - Source identification
- Second day Session
 - Individual source and background extraction
 - Spectral analysis

