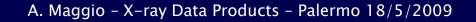

constellation School on

X-rays from Star Forming Regions

DATA PRODUCTS OF X-RAY OBSERVATIONS

Antonio Maggio Istituto Nazionale di Astrofisica Osservatorio Astronomico di Palermo



Summary

- Basics of X-ray data from CCD detectors
- Introducing events and related quantities
- From raw data to the event list
- Data filtering and screening
- From data products to science analysis

Observatories and Instruments

 Several devices employed in past, present, and (hopefully) future X-ray observatories

		SPACE OBSERVATORY					
INSTRUMENT		Past		Present			Future
CLASS	ТҮРЕ	Einstein	ROSAT	Chandra	XMM	Suzaku	IXO
Gas Proportional Counters		X	Х				
Micro-Channel Plates		X	Х	X			
	CCDs			X	Х	Х	X
Solid-State Detectors	Others	X				X	X
Detectory	μCal					(X)	X
Dispersive	Crystals	X					
Dispersive	Gratings	X		X	X		X
Polarimeters							Х

A. Maggio - X-ray Data Products - Palermo 18/5/2009

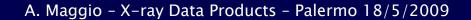
X-ray vs. optical data

Optical Observations

Images in different colors or spectra

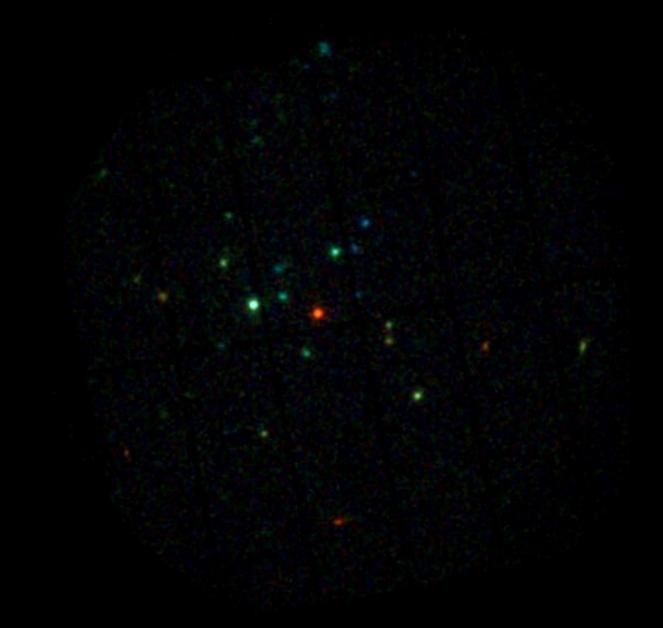
Source coordinates, photon fluxes

Flat field

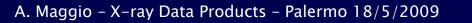

Dark (+bias) frame

Lamps

Standard stars


What are the equivalent data in X-ray observations?

X-ray observations of Star Forming Regions: an example


A. Maggio - X-ray Data Products - Palermo 18/5/2009

Basics of CCD-based X-ray data

- X-ray detectors are <u>photon-counters</u>
- X-ray data are <u>Poissonian</u>
 - Scientific products may have a few or even zero photons in large space and time ranges
- Data are made of <u>"events</u>", characterised by:
 - <u>Time</u> of occurrence at the spacecraft
 - <u>Position</u> on the detector
 - <u>Pulse Height</u>, related to the energy of the process which triggered the event
 - <u>Shape</u>, used to separate X-ray events from particles
 - CCD number and other secondary attributes for quality control of the event

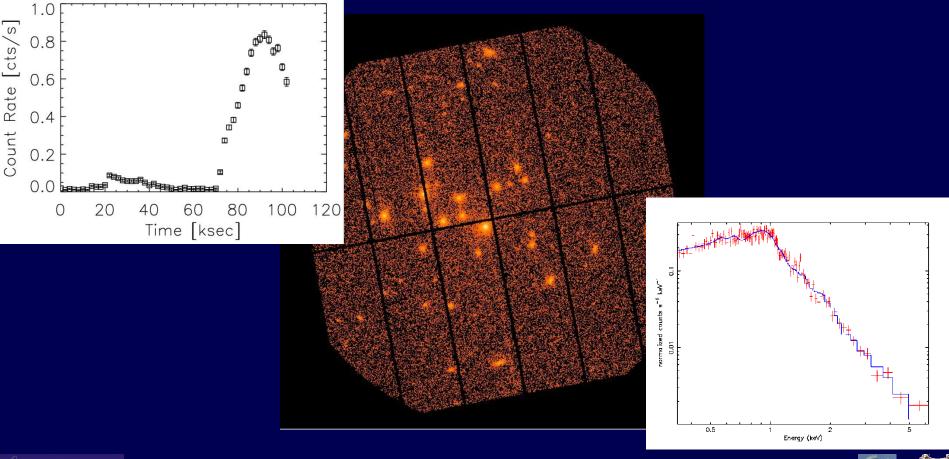
Event list

• For each event: when, where, how much, what, etc.

	TIME	<u>_</u> x	<u>}</u> Y	🗋 PHA	🔄 PI	PATTERN	CCDNR	
	D	J	J	1	1	в	В	
	s	0.05 ARCSECONDS	0.05 ARCSECONDS	CHAN	CHAN			
1	9.5062022664128+07	23743	21330	423	1447	2	1	
2	9.506202266412E+07	28728	21990	425	98	- 0	1	
3	9.506202527717 E +07	28176	31623	25	97	0	1	
4	9.5062025277172+07	29B29	30841	327	1131	0	1	
5	9.506202527717 X +07	23686	19319	541	1854	0	1	
6	9.506203046611E+07	25510	32711	1810	6171	0	1	
7	9.506203566620 E +07	29814	28823	1.02	360	0	1	
8	9.5062038266262+07	26635	30601	2062	7028	0	1	
9	9.5062043466252+07	26429	20314	443	1519	4	1	
10	9.506204606629%+07	20691	28728	1608	5471	3	1	
11	9.506204606629%+07	27989	29777	202	700	0	1	
12	9.506204606629%+07	21937	25667	117	402	2	1	
13	9.5062048666322+07	28132	32491	462	1589	0	1	
14	9.5062048666322+07	27204	29741	904	3095	0	1	
15	9.5062051266382+07	22124	20257	290	994	0	1	
16	9.5062059066432+07	23193	18795	1398	4771	0	1	
17	9.5062061666462+07	23224	19326	276	950	0	1	
18	9.5062069466532+07	27755	28979	1.83	637	0	1	
19	9.506207206939±+07	22533	29563	33	118	0	1	

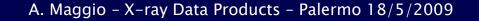
A. Maggio - X-ray Data Products - Palermo 18/5/2009

Science products


- X-ray science products can be seen as *projections onto different sub-spaces defined by the event physical quantities*
 - In the plane of the spatial coordinates, one gets a 2-D <u>image</u> in units of counts per pixel
 - By ignoring time and space, one gets an energy distribution function (<u>spectrum</u>) in units of counts per energy bin
 - By ignoring space and energy, one gets an intensity time series in units of counts per time bin (<u>X-ray light curve</u>)
- The aim of the science data analysis is to derive intrinsic physical properties of the celestial sources from these science products
- To this aim a good knowledge of the satellite operation and of the instrument response is required

Science products: examples

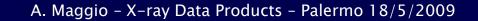
 XMM-Newton European Photon Imaging Camera (EPIC) observation of a Star Forming Region with the pn CCD detector



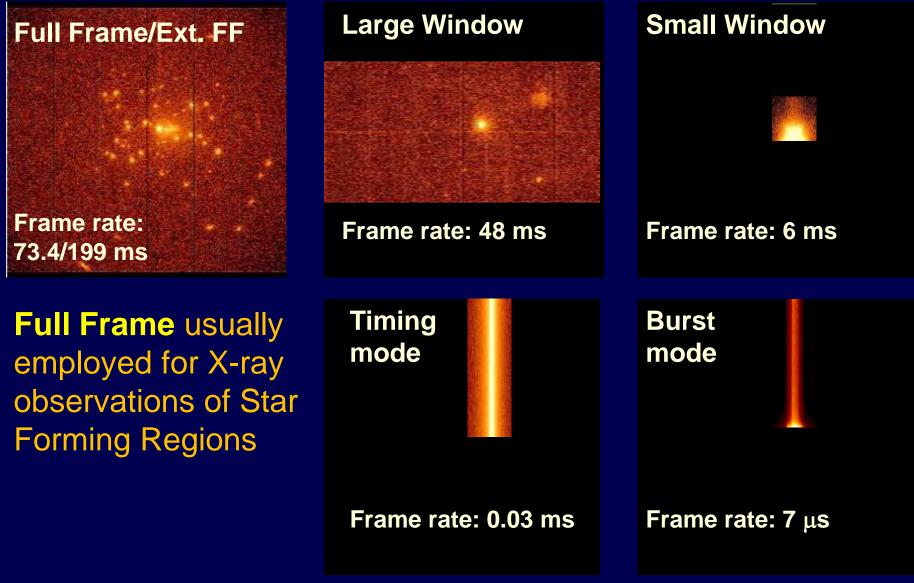
A. Maggio – X-ray Data Products – Palermo 18/5/2009

CCD-based X-ray data

- Charge Coupled Devices sensitive to X-ray photons (low-energy photons are rejected by means of filters)
- The signal number of secondary electrons generated in the Silicon chip is proportional to the photon energy
- A signal may be induced by an X-ray photon simultaneously in two or more pixels
- Signals may be produced also by particles, but recognized by peculiar multi-pixel spatial patterns
- Time-integrated signal charges are read at constant frame rates set by the way the CCD is operated



CCDs for X-ray astronomy: an example


- XMM–Newton EPIC–pn detector
- 12 back-illuminated pn-junctions
- 200 x 64 px each
- Signal readout nodes at one edge
- 5 different operational modes

XMM-Newton EPIC/pn operating modes

A. Maggio - X-ray Data Products - Palermo 18/5/2009

From raw data to event files

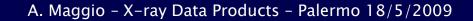
 In order to obtain event files suitable for science analysis a pre-processing of the raw data is required, in which calibrations are applied and observations are (partially) screened

Raw data quantity	Event file quantity	Requirements
FRAME COUNT	Time (UTC)	Clock
RAW COORDINATES	SKY COORDINATES	Star tracking
PHA (signal amplitude)	PI (energy)	Calibration sources
RAW COORDINATES (for gratings data)	DISPERSION ANGLE (wavelength)	

A. Maggio - X-ray Data Products - Palermo 18/5/2009

From raw data to event files: Timing information

- Time resolution is determined by the frame rate
- The actual exposure time of the observation is shorter than the total on-source time (dead-time correction required)
- Data useful for science analysis are identified by Good Time Intervals (for each CCD)
- Photons arriving during frame read-out times are "incorrectly" identified (Out-of-Time events)



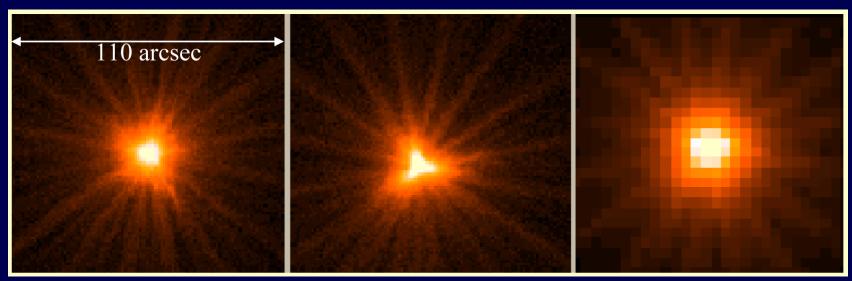
Spatial information issues: Out-of-Time (OoT) events

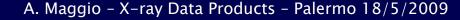
- OoT events: photons registered during CCD read-out
- OoT events create in images a strip of wrongly reconstructed event positions and broaden spectral features in RAWY (see CTE correction issues)

From raw data to event files: Event position

- Absolute Astrometry requires knowledge of space observatory pointing direction
- Accuracy determined by spacecraft attitude reconstruction
- Information from guide star trackers required
- Relative astrometry requires knowledge of detectors geometry

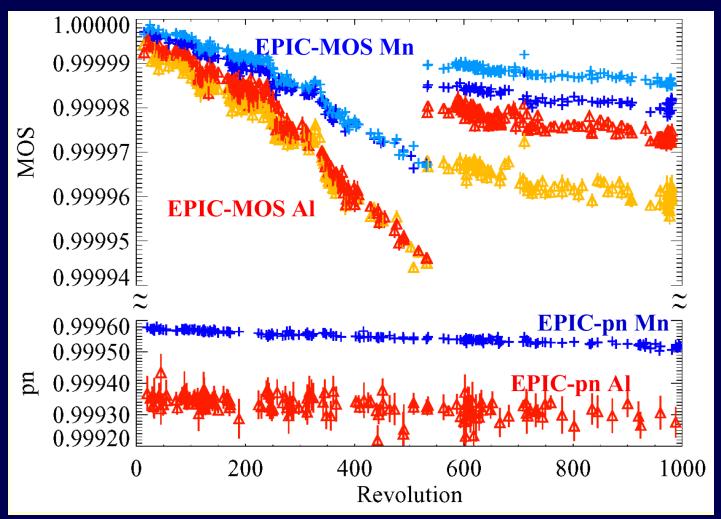
From raw data to event files: Spatial information issues


- Out–of–time events
 - CCD gaps
- Bad pixels:
 - Hot pixels: ghost events
 - Dead pixels: no events
 - They are routinely indentified and flagged!
- Bad columns
- Point Spread Function


A. Maggio - X-ray Data Products - Palermo 18/5/2009

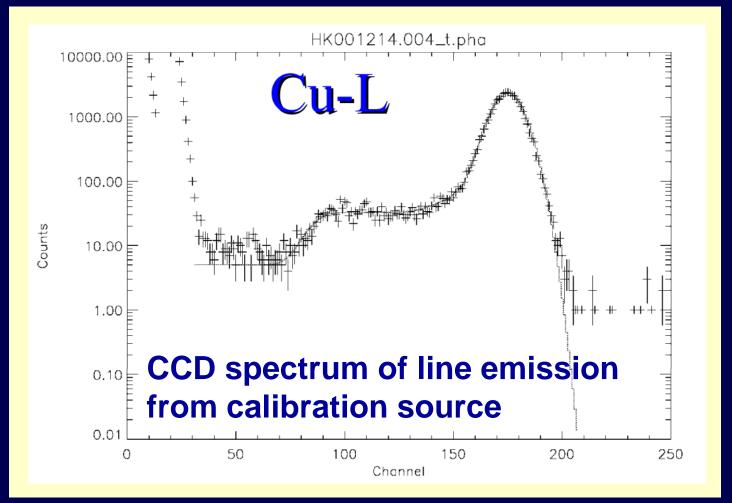
Point Spread Function

- Spatial distribution of events in the focal plane for a point source
- The PSF integrates to 1 over the infinite focal plane, but FWHM is 0.5-8" for Chandra and 4-10" for XMM
- The PSF depends on:
 - The mirror (i.e. type and quality of the optics)
 - The distance from field center (off-axis angle)
 - The photon energy


From raw data to event files: Energy information

- Photon energy computed from actual signal charge reading
- <u>Gain</u> is the conversion of the charge signal deposited by a detected photon from ADU (Analogue to Digital Unit) into energy (eV)
- <u>Charge Transfer Efficiency</u> (CTE) is the fraction of the signal charge actually transported to the read-out node. It depends on
 - CCD type and operation mode (frame rate)
 - Time of usage (long-term degradation)
- Continuous monitoring of internal calibration sources required

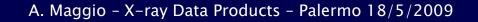
Charge Transfer Efficiency vs. Time


Energy (spectral) calibration is time-dependent!

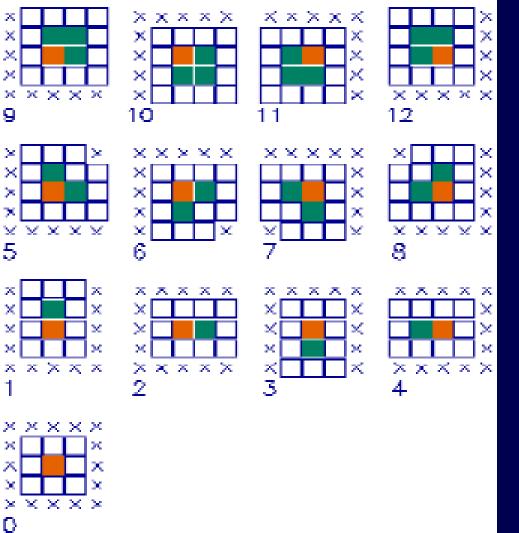
A. Maggio - X-ray Data Products - Palermo 18/5/2009

Spectral response

 Monochromatic X-ray photons can induce different signal charges
Probability of energy redistribution

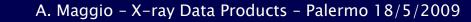

A. Maggio - X-ray Data Products - Palermo 18/5/2009

From raw data to event files: Event quality control


- False photon events can be produced also by particles focused by the optics
- Screening possible via
 - High-energy filtering
 - Event <u>patterns</u> (aka <u>grades</u> for Chandra)

Event patterns

- XMM–Newton EPIC–pn detector
- Patterns ≤ 4 (single or double events) are due to true photons (most likely)
- Patterns ≥ 5 are likely spurious events


A. Maggio – X-ray Data Products – Palermo 18/5/2009

From raw data to event files

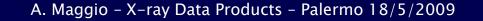
- Raw data (in the *primary/secondary* directories for Chandra or in *ODF* for XMM-Newton) include
 - Uncalibrated CCD events
 - Time correlation files (frame counts vs. UTC time)
 - Spacecraft attitude files (guide star tracking)
 - Spacecraft housekeeping files
 - Other auxiliary data and diagnostics
- Your data analysis will start from pre-processed event files, but the raw data will be required for further science-driven screening and calibration steps

Event data

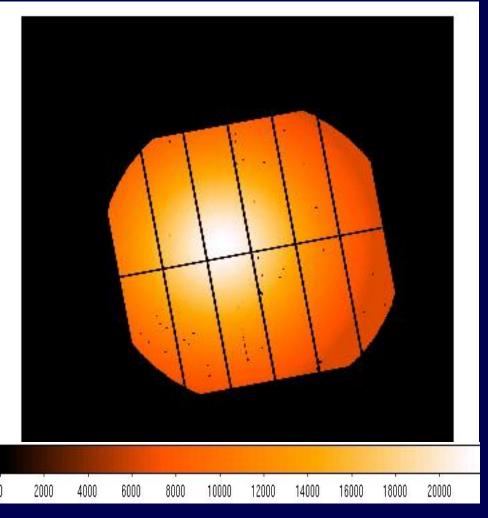
- The XMM/EPIC imaging-mode table of the calibrated <u>EVENTS</u> contain 14 columns (and similar quantities are in Chandra/ACIS event files):
 - **TIME** \rightarrow event occurrence time
 - RAWX, RAWY \rightarrow where on the CCD
 - **DETX, DETY** \rightarrow where on the detector
 - **X**, $\mathbf{Y} \rightarrow$ where from the sky
 - **PHA, PI** \rightarrow which energy did the event have
 - **FLAG** \rightarrow event at a critical place in the detector
 - **PATTERN** \rightarrow event was a true X-ray photon or not
 - **CCDNR** \rightarrow CCD where the event occurred

From data products to science analysis

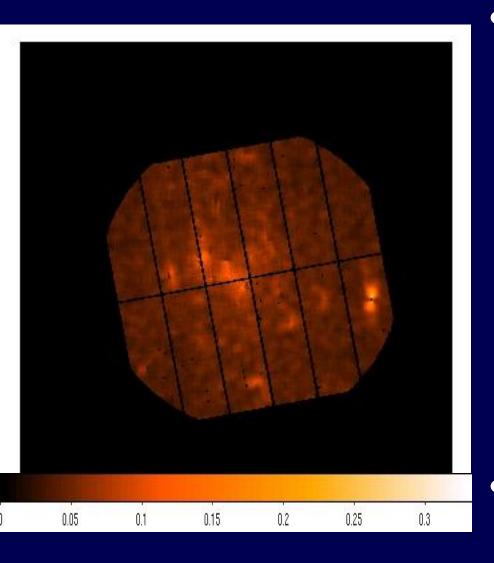
- Standard processing yields quick-look science products, but
- further screening of event files and more data products are usually required for optimal science analysis.
- These steps are left to the user because different choices are possible depending on the science aim
 - Detection of faint X-ray sources requires the lowest noise
 - Variability studies require the best time coverage
 - Spectral analysis requires the best determination of photon energies
 - X-ray photometry in crowded fields requires a good knowledge of the energy-dependent PSF and of the exposure time
 - Source identification requires accurate sky positions
 - Spectral modeling requires knowledge of the instrument response (transfer function)



More data products for science analysis


- For source detection and image analysis
 - <u>Exposure maps</u>: mirror and detector sensitivity across the field-of-view, taking into account any changes in the spacecraft pointing direction
 - <u>Background maps</u>: smoothed maps of the field-ofview background (both of instrumental and cosmic origin)
- For spectral analysis
 - <u>Effective area</u>: transfer function of optics+detector as a function of energy and position
 - <u>Redistribution matrix</u>: probability that a photon of a given energy is registered in a given channel

Exposure map

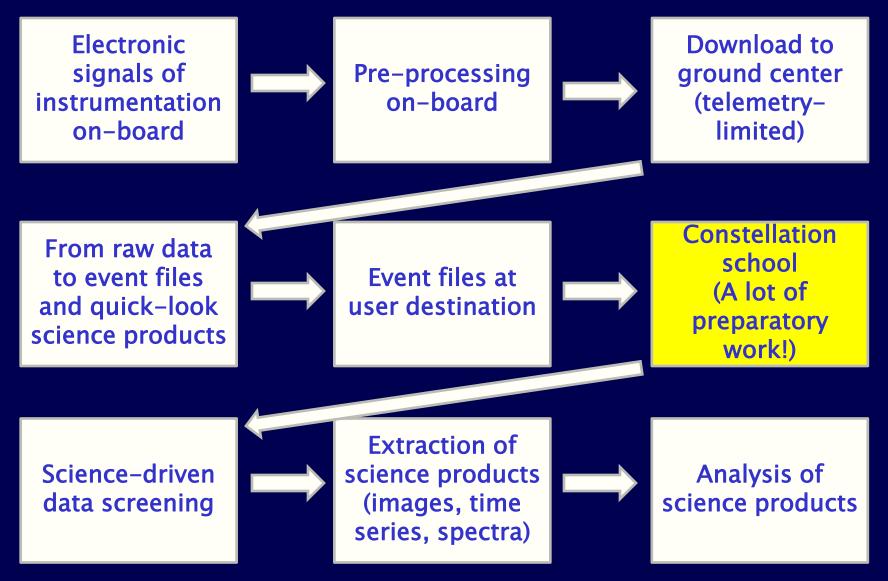

- Instrument sensitivity decreases from the center (the aim point) toward the edges of the field of view (vignetting effect)
- This effect can be described as if the exposure time decreases with the off-axis angle
- The exposure map also describes other obscuration effects in the field of view
- Required to compute images in flux units

A. Maggio - X-ray Data Products - Palermo 18/5/2009

Background map

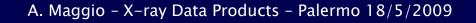
- Background may include
 - Diffuse sky emission
 - Scattered light from very bright X-ray sources just outside the FoV
 - Residual events due to particles
 - Instrumental noise
 - Photons in the PSF tails of actual X-ray sources in the field
- Required for source detection and S/N ratio

X-ray vs. optical data


X-ray Observations (imaging + CCD-resolution spectra)	Optical Observations
Event lists	Images in different colors or spectra
Time, coordinates, energy	Coordinates, photon fluxes
Exposure map	Flat field
Background map (including sky)	Dark (+bias) frame
On board calibration sources	Lamps
Sky calibration sources	Standard stars

A. Maggio - X-ray Data Products - Palermo 18/5/2009

Sequence of steps (a summary)



A. Maggio – X-ray Data Products – Palermo 18/5/2009

X-ray data calibration

- A major advantage of X-ray observations with respect to ground-based optical observations:
 - Spacecraft, optics, and detector status is continuously monitored
 - The instrument performance is time-dependent, but updated calibration data and processing software is continuously released and backcompatibility is maintained

