OBSERVATIONS AND MODELING OF X-RAY EMISSION FROM PROTOSTELLAR JETS

Rosaria (Sara) Bonito - INAF-OAPa

S. Orlando, INAF - Osservatorio Astronomico di Palermo, IT G. Peres, Dip.S.F.A., Universita' di Palermo, IT F. Favata, ESA, Community Coordination and Planning Office, Paris G. Micela, INAF - Osservatorio Astronomico di Palermo, IT S. Sciortino, INAF - Osservatorio Astronomico di Palermo, IT M. Fridlund, ESA-ESTEC, Noordwijk, The Netherland R. Rosner, Director, Argonne National Laboratory; ASC Flash Center J. Eisloffel, Thüringer Landessternwarte, Tautenburg (Germany)

Outline

First observations of the X-ray emission from protostellar jets

First hydrodynamic model and synthesis of the X-ray emission from protostellar jets

2005 X-ray and optical observations of the emission from HH 154

Modeling X-ray emission from a pulsed jet

Herbig - Haro (HH) objects

HH objects: shocks formed at the interaction front between a supersonic jet and the surrounding medium

X-ray emission discovered from few HH objects since 2000: the first 2 (in 2000):

X-ray emitting HH jets (few examples)

- Observed with both XMM and Chandra: 2000, 2001, 2005
- Strongly absorbed stellar corona: A_v (star/jet)= (150/7) mag
- The nearest most luminous jet: > 60 cnts in ~ 100 ks (single exposure)

	object	L _x	Т	N _H	d	References
		[10 ²⁹ erg s ⁻¹]	[MK]	[10 ²² cm ⁻²]	[pc]	
	HH 2	5.2	2.7	< 0.09	480	Pravdo et al. (2001)
(HH 154	3.0	2.0-7.0	1.40	140	Favata et al. (2002)(2006)
						Bally et al. (2003)
	HH 80/81	450	1.5	0.44	1700	Pravdo et al. (2004)
	HH 168	1.1	5.8	0.40	730	Pravdo & Tsuboi (2005)
	HH 210	10	0.8-3.8	0.80	450	Grosso et al. (2006)
ALLWAY	DG Tau	0.12	3.4	0.3	140	Gudel et al. (2008)
Bonito et al. (2007)						

X-ray emission from a light jet (XMM-Newton/EPIC-pn) Model

Model (Bonito et al. 2004): count rate = 1.2 cnts/ks $T = (3.4 \pm 1.2)x10^{6}K$ Fx = 1.4x10⁻¹³ erg/cm²/s

Observations (Favata et al. 2002): count rate = 1.0 cnts/ks $T = (4.0 \pm 2.5) \times 10^6$ K Fx = 1.3×10⁻¹³ erg/cm²/s

X-ray emission from a light jet

(XMM-Newton/EPIC-pn)

Shocks from supersonic jets: reproduce in a natural way the observed L_X and $(EM, T)_{best-fit}$ predicts proper motion

Natural candidate to explain the physical mechanism of the X-ray emission from protostellar jets Model (Bonito et al. 2004): count rate = 1.2 cnts/ks T = (3.4 ± 1.2)x10⁶K Fx = 1.4x10⁻¹³ erg/cm²/s

Observations (Favata et al. 2002): count rate = 1.0 cnts/ks $T = (4.0 \pm 2.5) \times 10^6$ K Fx = 1.3×10⁻¹³ erg/cm²/s

X-ray vs. optical emission

Open questions

First model: does not explain some observed features

New model to explain:

X-ray emission from the base of the jet (HH 154, DG Tau)
Complex morphology (the first and only one case = HH 154)
Variability (the first and only one case = HH 154)

common feature for HH jets

The pulsed jet scenario

- **#** X-ray from the base of the jet
- Complex morphology
- **Wariability**
- **#** Size of the X-ray source

Bonito et al. (2009) in prep.

The pulsed jet scenario

Bonito et al. (2009) in prep.

Conclusions

- **X**-ray from the base of the jet
- **I** Complex morphology
- Variability
- $\texttt{I} \quad \texttt{T} \sim 10^6 \ \text{K}$
- $I L_X \sim (10^{28} 10^{31}) \text{ erg/s}$
- \blacksquare v_{sh} \approx 500 km/s
- First simple model continuous jet: reproduces in a natural way the X-ray emission (T, L_X, v_{sh}) does not explain (*)

(*)

- New model to explain (*): v(t)
- # Exploration of the parameter space:
 - M, v, n_j, v(†), ...
- # Preliminary results:

(*) + size in nice agreement with HH 154 promising model: work in progress