next up previous
Up: ROSAT PSPC Observation of Previous: Ionization Time and nature

Summary and conclusion

We have performed spatially resolved spectral analysis of a tex2html_wrap_inline734 radius field in the NE shock region of the Vela SNR, using a pointed PSPC observation and a STNEI emission model we developed. We have derived maps of temperature and ionization time with a spatial resolution of tex2html_wrap_inline1064. The maps show that variations of thermodynamical parameters exist on this scale. The hypothesis that the X-ray emission could be described everywhere by a single-tau single-temperature STNEI model with cosmic abundances is rejected, but 21 out of 48 spatial bins have acceptable tex2html_wrap_inline700 values (tex2html_wrap_inline1068 correspondent to the 95% confidence level). Most of these 21 bins shows unexpectedly low values of the ionization time (tex2html_wrap_inline702 in yr cmtex2html_wrap_inline704). Only 3 bins have acceptable tex2html_wrap_inline700 and a reasonable tex2html_wrap_inline906 value (> 1.0). Considering this results and those presented in Paper I, where we show the success of the 2T CIE model on the same data set, a multi-phase description of the emitting plasma, probably due to superposition of multiple shocks in an inhomogeneous and optically thin medium, is needed for a valid interpretation of the observed spectra. Low metal abundances cannot be excluded because this could explain the low values of the ionization time derived assuming cosmic abundances. Deep optical observations in Htex2html_wrap_inline1080 and other ``cooling" lines would be useful to confirm such a scenario, since ionizing material is expected to emit at Htex2html_wrap_inline1080 6563 Å (Raymond, 1988) and cloudlets are expected to cool behind the shock and emit strongly in the optical band (McKee & Cowie, 1975). We have carried out such optical follow-up observations using the ESO-MPI 2.2m telescope at La Silla (Chile), which we shall report in a subsequent paper in this series.

Future planned extensions of this work will explore the abundances effect in the PSPC spectra, taking into consideration the recent findings of Vancura et al. (1994). We intend also to study the physical conditions arising from a shock expansion in a inhomogeneous medium using the 2D Palermo hydrodynamical code (Reale, Peres and Serio, 1991) coupled to an appropriate NEI emission code. We think that such an approach may contribute to understand better our data and, more in general, to interpret of the SNR X-ray data of ROSAT as well as of future detector with higher spatial and spectral resolution. Moreover, more realistic effects in the STNEI model itself as outlined in section 3.2 are still to be considered.

Acknowledgement: F. Bocchino wishes to thank stimulating discussion with O. Vancura and the Supernova Remnant Group at CfA in Cambridge, USA. The authors wish to thank the suggestion and comments from S. Serio, R. Pallavicini, F. Reale and G. Peres. We also thank the referee, D. Cox, for his constructive criticism about the manuscript. This work was partially supported by Ministero della Università e delle Ricerca Scientifica e Tecnologica, GNA-CNR and a contract of Italian Space Agency (ASI).

References

Aschenbach, B. 1993, Adv. Space Res., 13, 1245-1255
Bedogni, R., & Woodward, P. R. 1990, A&A, 231, 481
Bocchino, F. 1993, Thesis, University of Palermo
Bocchino, F., Maggio, A., & Sciortino, S. 1994 (Paper I), ApJ, 437, 209
Bocchino, F., Barbera, A., & Sciortino, S. 1996, Proceedings of ``RöntgenStrahlung from the Universe", Wurzburg (Germany), eds. H. U. Zimmermann, J. E. Trümper & H.York, MPE Report 263, 673
Bocchino, F., Maggio, A., & Sciortino, S. 1996, Proceedings of ``RöntgenStrahlung from the Universe", Wurzburg (Germany), eds. H. U. Zimmermann, J. E. Trümper & H.York, MPE Report 263, 235
Brinkmann, W. 1988, in Supernova Shells and Their Birth Events, Kundt W. ed., Springer - Verlag
Canizares, C. R. 1983, in Supernova Remnants and Their X-ray Emission, eds. Danzinger & Gorenstein, 205
Cox, D. P., Anderson, P. R. 1982, ApJ, 253, 268
Cui, W., & Cox, D. P. 1992, ApJ, 401, 206
Gorenstein, P., Harnden, F. R. Jr., & Tucker, W. H. 1974, ApJ, 192 661
Hamilton, A. J. S., & Sarazin, C. L. 1984, ApJ, 284, 601
Hamilton, A. J. S., Sarazin, C. L., & Chevalier R. A. 1983, ApJS, 51, 115
Hayashi, I., Koyama, K., Ozaki, M., Miyata, E., Tsunemi, H., Hughes, J. P., & Petre, R. 1994, PASJ,46, L121
Hughes, J. P., & Helfand, D. J. 1985, ApJ, 291, 544
Hughes, J. P., & Singh, K. P. 1994, ApJ, 422, 126
Hwang, U., Hughes, J. P., Canizares, C. R., & Markert, T. H. 1993, ApJ, 414, 219
Itoh, H. 1979, PASJ, 31, 541
Kahn, S. M., Gorenstein, P., Harnden, F. R. & Seward, F. D. 1985, ApJ, 299, 821
Lampton, M., Margon, B., & Bowyer, S. 1976, ApJ, 208, 177
Landau, L. D., & Lifshitz, E. M. 1974, Fluid Mechanics, Pergamon Press.
Lotz, W., 1967, ApJS, 14, 207
Masai, K. 1984, Ap&SS, 98, 367
Masai, K. 1994, ApJ, 437, 770
McKee, C. F., & Cowie, L. L. 1975, ApJ, 195, 715
McKee, C. F., & Hollenbach, D. J. 1980, Ann. Rev. A&A, 18, 219
Mewe, R., & Gronenschild, E. H. B. M. 1981, A&AS, 45, 11
Myata, E., Tsunemi, H., Pisarski, R., & Kissel, S. E. 1994, PASJ, 46, L101
Murphy, D. C., & May, J. 1991, A&A, 247, 202
Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T. 1986, Numerical Recipes, Cambridge University Press
Raymond, J. C. 1988, in Hot Thin Plasmas in Astrophysics, R. Pallavicini ed, Kluwer Academic Publisher, 3-20
Raymond, J. C. 1989, private communication
Raymond, J. C., & Smith, B. W. 1977, ApJS, 35, 419
Reale, F., Peres, G., & Serio, S. 1990, Nuovo Cimento B, 105, 1235
Sedov, L. 1959, Similarity and Dimensional Methods in Mechanics, New York, Academic Press
Shull, M. J., van Steenberg, M. 1982, ApJS, 48, 95
Summers, H. P. 1974. Culham Laboratory Internal Memo IM-367, Culham Laboratory, Ditton Park, Slough, England.
Taylor, G. I. 1950, Proc. R. Soc. London, A201, 159 and 175
Vancura, O., Raymond, J. C., Dwek, E., Blair, W. P., Long, K. S., & Foster, S. 1994, ApJ, 431, 188
Vedder, P. W., Canizares, C. R., Market, T. H., & Pradhan, A. K. 1986, ApJ, 307, 269
Weiler, K. W., & Panagia, N. 1980, A&A, 90, 269
Weiler, K. W., & Sramek, R. A. 1988, Ann. Rev. A&A , 26, 295
Woltjer, L. 1972, Ann. Rev. A&A, 10, 129
Yamauchi, S., Ueno, S., Koyama, K., Nomoto, S., Hayashida, K., Tsunemi, H., & Asaoka, I. 1993, PASJ, 45, 795
Yamauchi, S., Kawai, N., & Aoki, T. 1994, PASJ, 46, L109



  table203
Table 1: Number of counts in each spatial bin of the X-ray image

  table215
Table 2: Statistical indetermination on best-fit parameter for the NEI modeltex2html_wrap_inline1104

  table225
Table 3: Best-fit parameters and derived quantities for the ``T3 bins"

Figure Captions

Fig. 1:
X-ray emissivity versus ionization time at various temperatures in the 0.1-2.0 keV band computed with our STNEI model, both unfolded (left) and folded with the PSPC instrumental response (right). The folded curves have been computed by generating the PSPC spectra for each model grid point and summing on SASS channels 3-30. Each curve is labelled with the corresponding temperature in keV.
Fig. 2:
From left to right: (a) Grey scale Map of the observed counts in the 0.1-2.0 keV band. The data have been sampled on a spatial grid reflecting the circular symmetry of the Vela SNR emission as a whole, and yielding few thousand counts per bin for an optimal parameter restoration with the STNEI model. (b) tex2html_wrap_inline700 map. The grey scale top is at tex2html_wrap_inline1182 which is the threshold at the 95% confidence level. Spatial bins with tex2html_wrap_inline1184 are not displayed.
Fig. 3:
Top: (a): PSPC spectrum at position e6 with the correspondent best-fit STNEI spectrum, parameters, and residuals. We also report the confidence contours (68, 90 and 99% level) in the tex2html_wrap_inline1186 plane. The unfolded best-fit spectrum is shown on the right. Bottom: (b): Same as above but for bin c7.
Fig. 4:
PSPC spectrum at position d3 as an example of spectrum not fitted by our model.
Fig. 5:
From top left to bottom right: (a) Temperature map. (b) Ionization time map. Units and ranges are also indicated for each map.

  figure262
Figure 5:

  figure268
Figure:

  figure274
Figure:

  figure284
Figure:

  figure289
Figure:


next up previous
Up: ROSAT PSPC Observation of Previous: Ionization Time and nature

Fabrizio Bocchino
Wed Jan 15 13:20:09 MET 1997